
MATH96023/MATH97032/MATH97140 -
Computational Linear Algebra

Edition 2023.0

Colin J. Cotter

Nov 29, 2024





CONTENTS

1 Getting ready for computational exercises 1
1.1 Getting the software that you need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Python virtual environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 GitHub and git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Setting up your repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 How to do the computational exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Running your work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Testing your work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.9 Coding style and commenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Skeleton code documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Linear algebra preliminaries 9
2.1 Matrices, vectors and matrix-vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Range, nullspace and rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Invertibility and inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Adjoints and Hermitian matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Inner products and orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Orthogonal components of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Unitary matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Vector norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Projectors and projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Constructing orthogonal projectors from sets of orthonormal vectors . . . . . . . . . . . . . . . . 18

3 QR factorisation 21
3.1 What is the QR factorisation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 QR factorisation by classical Gram-Schmidt algorithm . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Projector interpretation of Gram-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Modified Gram-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Modified Gram-Schmidt as triangular orthogonalisation . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Householder triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Application: Least squares problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Analysing algorithms 33
4.1 Operation count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Operation count for modified Gram-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Operation count for Householder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Matrix norms for discussing stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Norm inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Condition number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Conditioning of linear algebra computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Floating point numbers and arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.10 Backward stability of the Householder algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 42

i



4.11 Backward stability for solving a linear system using QR . . . . . . . . . . . . . . . . . . . . . . 42

5 Finding eigenvalues of matrices 47
5.1 How to find eigenvalues? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Transformations to Schur factorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Similarity transformation to upper Hessenberg form . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Rayleigh quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Power iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.6 Inverse iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.7 Rayleigh quotient iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8 The pure QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.9 Simultaneous iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10 The pure QR algorithm and simultaneous iteration are equivalent . . . . . . . . . . . . . . . . . 56
5.11 Connections between power iteration, inverse iteration, and QR algorithm . . . . . . . . . . . . . 57
5.12 The practical QR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Iterative Krylov methods for 𝐴𝑥 = 𝑏 61
6.1 Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Arnoldi iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Convergence of GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Preconditioned GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6 Knowing when to stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Preconditioning Krylov methods 67
7.1 Stationary iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Using splitting methods as preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3 Symmetric iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.4 Convergence criteria for stationary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5 Splitting methods as preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.6 Convergence analysis for Richardson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.7 Convergence analysis for symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.8 An example matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.9 Chebyshev acceleration (nonexaminable in 2023/24) . . . . . . . . . . . . . . . . . . . . . . . . 75

8 cla_utils package 79
8.1 Submodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 cla_utils.exercises1 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.3 cla_utils.exercises10 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.4 cla_utils.exercises2 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.5 cla_utils.exercises3 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.6 cla_utils.exercises8 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.7 cla_utils.exercises9 module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.8 Module contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Python Module Index 87

Index 89

ii



CHAPTER

ONE

GETTING READY FOR COMPUTATIONAL EXERCISES

In the course notes you will encounter computational exercises for you to complete. The object of these exercises
is to build up understanding about how computational linear algebra algorithms actually work. Along the way
you will have the opportunity to pick up valuable scientific computing skills in coding, software engineering and
rigorous testing. They involve completing unfinished “skeleton” code, which we will then use in the courseworks.

In this preliminary section, we will explain how to get set up to do the computational exercises. If you have taken
Principles of Programming (a second year optional course on our undergraduate Mathematics programme) then
you will have already been shown how to do most of this. If not, we will provide some links to some material on
that course that it is well worth reading.

You can use your own laptop running Windows, Linux, or macOS.

There is a lot of information below, but here is a summary checklist to check that you have everything ready to do
your work.

1. Install Python, Git and a text editor using the instructions below.

2. Create a working folder and put a virtual environment in it (venv).

3. Clone your course repository from Github Classroom into the working folder.

4. Activate the venv.

5. Install numpy to the venv, and pytest.

6. Install the course module to the venv.

7. Remember to activate the venv every time you work on the course module.

8. Make sure that you understand how to run code in the course repository (including your own code you have
added).

9. Make sure that you understand how to commit your changes to your Git repository and how to push them to
Github.

10. Make sure that you know how to run the tests.

To follow these steps read the sections below.

1.1 Getting the software that you need
The core requirements are Python (version >=3.7), Git, and a Python-aware text editor.

In order to write the code required for the implementation exercise, you’ll need to use a Python-aware text editor.
There are many such editors available and you can use any you like. If you haven’t used Python and/or Git before,
it is a good idea to use Visual Studio Code (VSCode) which is a Python-aware text editor, since VSCode also
provides a Terminal and an interface to Git.

Up to date information on how to install Python, Git and VSCode on a Windows, Linux or Mac machine is available
at the Installing the necessary software section of the Principles of Programming website.

Task 1 Install Python, Git and VSCode (or your preferred text editor for coding) on your computer that you will
use for this course.

1

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://object-oriented-python.github.io/installation.html


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

� Hint

If you are a Mac user, you’ll need to avoid using the preinstalled Python on your system, as it is a very cut
down version for interacting with the MacOS. You should install a fully featured Python (using Anaconda or
Homebrew, as described in the link above).

� Hint

If you want to use Imperial’s computer lab machines, they have the software you need installed, in some cases
via the Software Hub. To get started, double click the Software Hub icon on the desktop or visit the Software
Hub page.

1.2 The Terminal
A lot of the routine activity involved in this module revolves around executing commands on the Bash terminal
(sometimes referred to as the “command line”). For example you use the terminal to work with the revision control
system. If you’re not familiar with the Linux terminal, then you can read this brief guide to the terminal. That
guide focusses on the Bash shell, which is the one we will use.

� Hint

In VSCode you can get a terminal by selecting New Terminal from the Terminal menu. This should open a
Terminal window on your VS Code screen. To the top right of this window is a pulldown menu to select the
interpreter, which needs to be Bash. The image to the right shows this pulldown menu.

� Hint

In VSCode, to ensure you are using the correct Python interpreter,

1. Go to the View menu and select the Command Palette.

2. Start typing Python: Select Interpreter, and click on it when it comes up.

3. Select the correct Python interpreter from the pulldown menu (on Mac, the one you installed from Home-
brew or Anaconda, on Windows, the one that you installed from the Microsoft Store).

1.3 Python virtual environment
The next step is to set up a Python virtual environment using the Terminal. This is described in Section 1.2 of the
Principles of Programming website.

Task 2 Create a new virtual environment for your Computational Linear Algebra work and activate it, following
the instructions of Section 1.3 of PoP linked above.

Two differences are as follows.

1. You should name the working folder something more relevant to this course!

2. You should name the venv:

2 Chapter 1. Getting ready for computational exercises

https://softwarehub.imperial.ac.uk/
https://softwarehub.imperial.ac.uk/
http://www.tuxarena.com/static/intro_linux_cli.php
https://object-oriented-python.github.io/1_introduction.html#setting-up-a-python-virtual-environment


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

clavenv

instead of:

PoP_venv

� Hint

It is recommended you keep this name to avoid spuriously committing venv files to the git repository. If you
decide to give your venv a different name, please add that name to the .gitignore file in your git repository. If
you don’t know what this means, it is probably best to use the name “clavenv”.

Task 3 Following the instructions in Section 1.3 of the Principles of Programming website, install the numpy and
pytest packages to your venv (don’t forget to activate it first).

1.4 GitHub and git
Revision control is a mechanism for recording and managing different versions of changing software. This enables
changes to be tracked and helps in the process of debugging code, and in managing conflicts when more than one
person is working on the same project. Revision control can be combined with online hosting to provide secure
backups and to enable you to work on code from different locations.

In this module, you’ll use revision control to access the skeleton files. You’ll also use the same revision control
system to record the edits you make over time and to submit your work for feedback and, eventually, marking.

We will be using the revision control system git, which has cornered the market in this area now. We’ll be combining
git with the online hosting service GitHub.

There is a brief introduction to Git in the Just Enough Git to Get By section of the Principles of Programming
website.

Task 4 Read through (or review, if you read it before) Sections 2.1, 2.2, and 2.3 of Just Enough Git to Get By.

Task 5 Configure your Git installation by following the instructions in Section 2.4 of Just Enough Git to Get By.

� Hint

These instructions involve typing into the Terminal. VSCode provides other ways to configure but it is much
easier to get help if you are typing into the Terminal. Make sure that you have selected the Bash interpreter for
your Terminal.

Task 6 Create and/or setup your Github account following the instructions in Section 2.5 of Just Enough Git to
Get By.

Task 7 If you have not done it before, complete the simple exercise in Section 2.6 of Just Enough Git to Get By.
This exercise uses the Git Training Assignment which is linked on Blackboard, which you should clone into your
working folder.

� Hint

Above all else, never use:
git add -A

or:

git add *

to add all the files in the repository. This is bad practice and makes a mess for the markers, making them
grumpy. When you commit changes to files in your repository for this course, just use:

git add

1.4. GitHub and git 3

https://object-oriented-python.github.io/1_introduction.html#installing-python-packages
https://numpy.org/doc/stable/reference/index.html#module-numpy
http://git-scm.com/
https://object-oriented-python.github.io/a2_git.html#git


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

to add the files you changed to the list of files to be updated in the commit history.

Similarly, VSCode has a graphic interface for Git. It is preferred to use the Terminal in this course, as it is easier
to get help. If you do decide to use the graphic interface, just ignore any files that are marked as not added. Do
not try to click them to remove the marks.

. Warning

Never clone a repository inside the folder of another folder.

1.5 Setting up your repository
We’re using a tool called GitHub classroom to automate the creation of your copies of the repository. Follow the
link on Blackboard marked “Course Repository” to create your personal repository for the course. Then, clone it
to your working folder on your computer following the instructions in the previous section.

. Warning

When you follow the link, you will be asked to select your “school’s identifier” from a list. This will be your
user ID that you use to log into Outlook (e.g., sbc21). If you don’t find your ID on the list, do not click “Skip
to the next step”. And, do not click someone else’s ID! Instead, contact the course leader and ask to have your
user ID added. We need to do this so that we can grade your work.

� Hint

To change folder in the terminal, type cd <path> where <path> is the path to the folder you want to change
to. Paths can be “absolute” e.g. /home/users/jbloggs/comp-lin-alg/ or “relative” e.g. if you are currently in
/home/users/jbloggs then you can use comp-lin-alg. Typing pwd shows the current path, and typing ls shows
the contents of the current folder. Typing cd .. changes to the enclosing folder, and typing cd - changes back to
the previous folder. For more information see the “brief guide to the terminal” linked above.

� Hint

In VSCode, you will be asked if you want to make this venv the default for your project. Select “yes” as this
will help to ensure that it is activated.

� Hint

Every time you want to work on the implementation exercises and courseworks, you need to activate the venv.

. Warning

Your classroom repository will contain a branch called “feedback”. Do not commit to, or remove, this branch.
This is how we will provide feedback on your code.

4 Chapter 1. Getting ready for computational exercises

https://classroom.github.com


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

1.5.1 Installing the course package to the venv
In this course we will be working on skeleton code stored as a Python package in the repository. This means that
we will be able to import everything as a module using from cla_utils import * without needing to be in a particular
folder. This is what makes the tests work, for example.

Task 8 Install the course package to your venv. To do this:

1. Activate the clavenv as above.

2. Change folder to the repository that you just checked out (this should contain folders called doc, cla_utils,
test, etc.).

3. Type python -m pip install -e .

Task 9 Read this useful information on Modules and Packages that will be useful later.

1.6 How to do the computational exercises
For the computational exercises, quite a lot of the coding infrastructure you will need is provided already. Your
task is to write the crucial mathematical operations at key points, as described on this website.

The code on which you will build is in the cla_utils folder of your repository. The code has embedded docu-
mentation which is used to build the cla_utils package web documentation.

As you do the exercises, commit your code to your repository. This will build up your computational exercise
solution sets. You should commit code early and often - small commits are easier to understand and debug than
large ones. Push your commits to your remote repository on Github.

� Hint

In Git, we use the Terminal to commit changes and push them to the remote repository on Github Classroom. A
repository is a record of the history of the code as you are working. To add a file to the list of files whose changes
will be committed to the repository, type git add <filename> -m <log message>, where <log message> is a
short description of the changes you made. To commit those changes, type git commit. They will now be saved
locally. To push these changes to the “remote” repository on Github Classroom, type git push (you may be
asked to set the name of the remote, just paste the suggested command into the Terminal). To pull changes
from the remote repository on Github Classroom, type git pull. For further features and better explanation,
please take a look at the Github Tutorial linked above.

. Warning

Never use git add *, since this will add unwanted files to the repository which shouldn’t be there. You should
never add machine specific files such as your venv, or .pyc files which are temporary machine specific files
generated by the Python interpreter. This really slows down the marking process and makes the markers grumpy.
You should only add the .py files that you are working on.

. Warning

Do not commit to the feedback branch. This branch is just there so that we can provide feedback on your
changes to the main branch, and if you commit there, it will mess up our marking system.

1.6. How to do the computational exercises 5

https://object-oriented-python.github.io/2_programs_in_files.html#modules
https://object-oriented-python.github.io/2_programs_in_files.html#packages


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

1.7 Running your work
If you want to execute your code written in cla_utils, this can be imported into IPython (in the terminal, or using a
Jupyter notebook), or in a script.

To use IPython, type ipython in the Terminal (when the venv is activated). You may need to install it first using
python -m pip install ipython (you must start the venv first). Then you can import cla_utils interactively using
from cla_utils import *. To exit IPython type Ctrl-D.

Task 10 Briefly read this Information about IPython.

If you also import numpy then you can create example numpy arrays and pass them to cla_utils functions to try
them out. You can also do this in a script, e.g.:

from cla_utils import *
from numpy import *
A = numpy.array([[1.0,2.0,0.,0.,1.0+1.0j],

[0.0,1.0,3.,0.,0.],
[0.0,0.0,1.,0.,0.],
[0.0,0.0,0.,1.,0.],
[0.0,0.0,0.,0.,1.]])

xr = numpy.array([1.,2.,1.,0.5,0.3])
xi = numpy.array([1.1,0.2,0.,1.5,-0.7])
ABiC(A, xr, xi)

After saving your text to a script with a filename ending in .py, e.g. run_ABiC.py, you can execute the script in the
Terminal by typing python run_ABiC.py (remember to change to the folder where the file is located). Scripts are
better because you can run the whole thing again more easily if you make a mistake, and you can save them.

Task 11 Briefly read this information about Python scripts.

. Warning

Don’t clutter up your repository by adding these experimental scripts with git add. If you want to store them it
is best to use another separate git repository for that.

1.8 Testing your work
As you complete the exercises, there will often be test scripts which check the code you have just written. These
are located in the test folder and employ the pytest testing framework. You run the tests with:

python -m pytest test_script.py

from the bash Terminal, replacing test_script.py with the appropriate test file name (remember to activate the
venv first). The -x option to pytest will cause the test to stop at the first failure it finds, which is often the best
place to start fixing a problem. For those familiar with debuggers, the --pdb option will drop you into the Python
debugger at the first error.

You can also run all the tests by running pytest on the tests folder. This works particularly well with the -x option,
resulting in the tests being run in course order and stopping at the first failing test:

python -m pytest -x

You should make sure that your code passes tests before moving on to the next exercise.

6 Chapter 1. Getting ready for computational exercises

https://object-oriented-python.github.io/2_programs_in_files.html#ipython
https://object-oriented-python.github.io/2_programs_in_files.html#python-scripts-and-text-editors
http://pytest.org/


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

1.9 Coding style and commenting
Computer code is not just functional, it also conveys information to the reader. It is important to write clear,
intelligible code. The readability and clarity of your code will count for marks.

The Python community has agreed standards for coding, which are documented in PEP8. There are programs and
editor modes which can help you with this. The skeleton implementation follows PEP8 quite closely. You are
encouraged, especially if you are a more experienced programmer, to follow PEP8 in your implementation. Full
code marks will require PEP8 compliance.

1.10 Skeleton code documentation
There is web documentation for the complete cla_utils package. There is also an alphabetical index and a search
page.

1.9. Coding style and commenting 7

https://www.python.org/dev/peps/pep-0008/


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

8 Chapter 1. Getting ready for computational exercises



CHAPTER

TWO

LINEAR ALGEBRA PRELIMINARIES

In this preliminary section, we revise a few key linear algebra concepts that will be used in the rest of the course,
emphasising the column space of matrices. We will quote some standard results that should be found in an under-
graduate linear algebra course.

� Hint

Before you attempt any exercises, you need to make sure that you have everything you need set up on your
computer. See the checklist in the previous section.

2.1 Matrices, vectors and matrix-vector multiplication
Supplementary video

https://player.vimeo.com/video/450145459

We will consider the multiplication of a vector

𝑥 =

⎛⎜⎜⎜⎝
𝑥1

𝑥2

...
𝑥𝑛

⎞⎟⎟⎟⎠ , 𝑥𝑖 ∈ C, 𝑖 = 1, 2, . . . , 𝑛, i.e. 𝑥 ∈ C𝑛,

by a matrix

𝐴 =

⎛⎜⎜⎜⎝
𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21 𝑎22 . . . 𝑎2𝑛

...
...

. . .
...

𝑎𝑚1 𝑎𝑚2 . . . 𝑎𝑚𝑛

⎞⎟⎟⎟⎠ ,

i.e. 𝐴 ∈ C𝑚×𝑛. 𝐴 has 𝑚 rows and 𝑛 columns so that the product

𝑏 = 𝐴𝑥

produces 𝑏 ∈ C𝑚, defined by

𝑏𝑖 =

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗 , 𝑖 = 1, 2, . . . ,𝑚. (2.1)

9

https://player.vimeo.com/video/450145459


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

In this course it is important to consider the general case where 𝑚 ̸= 𝑛, which has many applications in data
analysis, curve fitting etc. We will usually state generalities in this course for vectors over the field C, noting where
things specialise to R.

Supplementary video

https://player.vimeo.com/video/450156255

We can quickly check that the map 𝑥→ 𝐴𝑥 given by matrix multiplication is a linear map from C𝑛 → C𝑚, since
it is straightforward to check from the definition that

𝐴(𝛼𝑥+ 𝑦) = 𝛼𝐴𝑥+𝐴𝑦,

for all 𝑥, 𝑦 ∈ C𝑛 and 𝛼 ∈ C. (Exercise: show this for yourself.)

Supplementary video

https://player.vimeo.com/video/450157385

It is very useful to interpret matrix-vector multiplication as a linear combination of the columns of 𝐴 with coeffi-
cients taken from the entries of 𝑥. If we write 𝐴 in terms of the columns,

𝐴 =
(︀
𝑎1 𝑎2 . . . 𝑎𝑛

)︀
,

where

𝑎𝑖 ∈ C𝑚, 𝑖 = 1, 2, . . . , 𝑛,

then

𝑏 =

𝑛∑︁
𝑗=1

𝑥𝑗𝑎𝑗 ,

i.e. a linear combination of the columns of 𝐴 as described above.

Supplementary video

https://player.vimeo.com/video/450161699

We can extend this idea to matrix-matrix multiplication. Taking 𝐴 ∈ C𝑚×𝑙, 𝐶 ∈ C𝑙×𝑛, 𝐵 ∈ C𝑚×𝑛, with
𝐵 = 𝐴𝐶, then the components of 𝐵 are given by

𝑏𝑖𝑗 =

𝑙∑︁
𝑘=1

𝑎𝑖𝑘𝑐𝑘𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.

Writing 𝑏𝑗 ∈ C𝑚 as the jth column of 𝐵, for 1 ≤ 𝑗 ≤ 𝑛, and 𝑐𝑗 as the jth column of 𝐶, we see that

𝑏𝑗 = 𝐴𝑐𝑗 .

This means that the jth column of 𝐵 is the matrix-vector product of 𝐴 with the jth column of 𝐶. This kind of
“column thinking” is very useful in understanding computational linear algebra algorithms.

Supplementary video

10 Chapter 2. Linear algebra preliminaries

https://player.vimeo.com/video/450156255
https://player.vimeo.com/video/450157385
https://player.vimeo.com/video/450161699


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

https://player.vimeo.com/video/450162431

An important example is the outer product of two vectors, 𝑢 ∈ C𝑚 and 𝑣 ∈ C𝑛. Here it is useful to see these
vectors as matrices with one column, i.e. 𝑢 ∈ C𝑚×1 and 𝑣 ∈ C𝑛×1. The outer product is 𝑢𝑣𝑇 ∈ C𝑚×𝑛. The
columns of 𝑣𝑇 are just single numbers (i.e. vectors of length 1), so viewing this as a matrix multiplication we see

𝑢𝑣𝑇 =
(︀
𝑢𝑣1 𝑢𝑣2 . . . 𝑢𝑣𝑛

)︀
,

which means that all the columns of 𝑢𝑣𝑇 are multiples of 𝑢. We will see in the next section that this matrix has
rank 1. In the complex number case, the transpose 𝑇 is replaced by the adjoint * which is the complex conjugate
of the transpose. There will be more about this later.

2.1.1 Your first programming exercises
In this course, there will be programming exercises, the first one of which is coming up right now. The aim of these
programming exercises is to gain understanding of the mathematical algorithms by expressing them as code. The
numpy Python package has a module called numpy.linalg that contains many of these algorithms. Hence for this
course we will not use this module, just use the functions and classes available when you import numpy itself. There
is one exception, which is that numpy.linalg.norm() is quite useful, but also covers a lot of different cases which
are not very edifying to replicate. Hence, we have included numpy.linalg.norm() in the cla_utils package
as cla_utils.norm(), should you wish to use it.

Exercise 12 The cla_utils.exercises1.basic_matvec() function has been left unimplemented. To finish
the function, add code so that it computes the matrix-vector product 𝑏 = 𝐴𝑥 from inputs 𝐴 and 𝑥. In this first
implementation, you should simply implement (2.1) with a double nested for loop (one for the sum over 𝑗, and one
for the 𝑖 elements of 𝑏). Run this script to test your code (and all the exercises from this exercise set):

py.test test/test_exercises1.py

from the Bash Terminal. Make sure you commit your modifications and push them to your course repository.

� Hint

Don’t forget to activate the virtual environment before running the tests to make sure that you have access to
all the necessary packages

� Hint

The fast array features of Python are provided by Numpy for which there is a helpful tutorial. There is also a
handy guide for Matlab users. In that context, the code provided in this course will always use Numpy arrays,
and never Numpy matrices.

Exercise 13 The cla_utils.exercises1.column_matvec() function has been left unimplemented. To finish
the function, add code so that it computes the matrix-vector product 𝑏 = 𝐴𝑥 from inputs 𝐴 and 𝑥. This second
implementation should use the column-space formulation of matrix-vector multiplication, i.e., 𝑏 is a weighted sum
of the columns of 𝐴 with coefficients given by the entries in 𝑥. This should be implemented with a single for loop
over the entries of 𝑥. The test script test_exercises1.py will also test this function.

� Hint

It will be useful to use the Python “slice” notation, for example:

A[:, 3]

2.1. Matrices, vectors and matrix-vector multiplication 11

https://player.vimeo.com/video/450162431
https://numpy.org/doc/stable/reference/index.html#module-numpy
https://numpy.org/doc/stable/reference/routines.linalg.html#module-numpy.linalg
https://numpy.org/doc/stable/reference/index.html#module-numpy
http://www.numpy.org/
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://wiki.scipy.org/NumPy_for_Matlab_Users


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

will return the 4th (since Python numbers from zero) column of 𝐴. For more information, see the Numpy
documentation on slicing.

Exercise 14 The cla_utils.exercises1.time_matvecs() function computes the execution time for these two
implementations for some example matrices and compares them with the built-in Numpy matrix-vector product.
Run this function and examine the output. You should observe that the basic implementation is much slower than the
built-in implementation. This is because built-in Numpy operations use compiled C code that is wrapped in Python,
which avoids the overheads of run-time interpretation of the Python code and manipulation of Python objects.
Numpy is really useful for computational linear algebra programming because it preserves the readability and
flexibility of Python (writing code that looks much more like maths, access to object-oriented programming models)
whilst giving near-C speed if used appropriately. You can read more about the advantages of using Numpy here. You
should also observe that the column implementation is somewhere between the speed of the basic implementation
and the built-in implementation. This is because (if you did it correctly), each iteration of the for loop involves
adding an entire array (a scaling of one of the columns of 𝐴) to another array (where 𝑏 is being calculated). This
will also use compiled C code through Numpy, removing some (but not all) of the Python overheads in the basic
implementation.

In this course, we will present algorithms in the notes that generally do not express the way that Numpy should
be used to implement them. In these exercises you should consider the best way to make use of Numpy built-in
operations (which will often make the code more maths-like and readable, as well as potentially faster).

2.2 Range, nullspace and rank
Supplementary video

https://player.vimeo.com/video/450162984

In this section we’ll quickly rattle through some definitions and results.

Definition 15 (Range) The range of 𝐴, range(𝐴), is the set of vectors that can be expressed as 𝐴𝑥 for some 𝑥.

The next theorem follows as a result of the column space interpretation of matrix-vector multiplication.

Theorem 16 range(𝐴) is the vector space spanned by the columns of 𝐴.

Definition 17 (Nullspace) The nullspace null(𝐴) of 𝐴 (or kernel) is the set of vectors 𝑥 satisfying 𝐴𝑥 = 0, i.e.

null(𝐴) = {𝑥 ∈ C𝑛 : 𝐴𝑥 = 0}.

Supplementary video

https://player.vimeo.com/video/450166119

Definition 18 (Rank) The column rank rank(𝐴) of 𝐴 is the dimension of the column space of 𝐴. The row rank
rank(𝐴) of 𝐴 is the dimension of the row space of 𝐴. It can be shown that the column rank and row rank of a
matrix are equal, so we shall just refer to the rank.

If

𝐴 =
(︀
𝑎1 𝑎2 . . . 𝑎𝑛

)︀
,

the column space of 𝐴 is span(𝑎1, 𝑎2, . . . , 𝑎𝑛).

Definition 19 An 𝑚× 𝑛 matrix 𝐴 is full rank if it has maximum possible rank i.e. rank equal to min(𝑚,𝑛).

If 𝑚 ≥ 𝑛 then 𝐴 must have 𝑛 linearly independent columns to be full rank. The next theorem is then a consequence
of the column space interpretation of matrix-vector multiplication.

Theorem 20 An 𝑚× 𝑛 matrix 𝐴 is full rank if and only if it maps no two distinct vectors to the same vector.

Definition 21 A matrix 𝐴 is called nonsingular, or invertible, if it is a square matrix (𝑚 = 𝑛) of full rank.

12 Chapter 2. Linear algebra preliminaries

https://numpy.org/doc/stable/reference/arrays.indexing.html
https://numpy.org/doc/stable/reference/arrays.indexing.html
https://numpy.org/devdocs/user/whatisnumpy.html
https://player.vimeo.com/video/450162984
https://player.vimeo.com/video/450166119


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Exercise 22 The cla_utils.exercises1.rank2() function has been left unimplemented. To finish the func-
tion, add code so that it computes the rank-2 matrix 𝐴 = 𝑢1𝑣

*
1 +𝑢2𝑣

*
2 from 𝑢1, 𝑢2 ∈ C𝑚 and 𝑣1, 𝑣2 ∈ C𝑛. As you

can see, the function needs to implement this rank-2 matrix by first forming two matrices 𝐵 and 𝐶 from the inputs,
and then forming 𝐴 as the product of 𝐵 and 𝐶. The test script test_exercises1.py in the test directory will
also test this function.

To measure the rank of 𝐴, we can use the built-in rank function:

r = numpy.linalg.matrix_rank(A)

and we should find that the rank is equal to 2. Can you explain why this should be the case (use the column space
interpretation of matrix-matrix multiplication)?

2.3 Invertibility and inverses
Supplementary video

https://player.vimeo.com/video/450171203

This means that an invertible matrix has columns that form a basis for C𝑚. Given the canonical basis vectors
defined by

𝑒𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
. . .
0
1
0
. . .
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

i.e. 𝑒𝑗 has all entries zero except for the jth entry which is 1, we can write

𝑒𝑗 =

𝑚∑︁
𝑘=1

𝑧𝑗𝑘𝑎𝑘, 1 ≤ 𝑗 ≤ 𝑚.

In other words,

𝐼 =
(︀
𝑒1 𝑒2 . . . 𝑒𝑚

)︀
= 𝑍𝐴.

We call 𝑍 a (left) inverse of 𝐴. It can be shown that 𝑍 is the
unique left inverse of 𝐴, and that 𝑍 is also the unique right inverse of 𝐴, satisfying 𝐼 = 𝐴𝑍. We write
𝑍 = 𝐴−1.

The first four parts of the next theorem are a consequence of what we have so far, and we shall quote the fifth and
sixth (see a linear algebra course).

Theorem 23 Let 𝐴 ∈ C𝑚×𝑚. Then the following are equivalent.

1. 𝐴 has an inverse.

2. rank(𝐴) = 𝑚.

3. range(𝐴) = C𝑚.

4. null(𝐴) = {0}.

5. 0 is not an eigenvalue of 𝐴.

2.3. Invertibility and inverses 13

https://player.vimeo.com/video/450171203


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

6. The determinant det(𝐴) ̸= 0.

Supplementary video

https://player.vimeo.com/video/450172407

Finding the inverse of a matrix can be seen as a change of basis. Considering the equation 𝐴𝑥 = 𝑏, we have
𝑥 = 𝐴−1𝑏 for invertible 𝐴. We have seen already that 𝑏 can be written as

𝑏 =

𝑚∑︁
𝑗=1

𝑥𝑗𝑎𝑗 .

Since the columns of 𝐴 span C𝑚, the entries of 𝑥 thus provide the unique expansion of 𝑏 in the columns of 𝐴 which
form a basis. Hence, whilst the entries of 𝑏 give basis coefficients for 𝑏 in the canonical basis (𝑒1, 𝑒2, . . . , 𝑒𝑚), the
entries of 𝑥 give basis coefficients for 𝑏 in the basis given by the columns of 𝐴.

Exercise 24 For matrices of the form, 𝐴 = 𝐼 + 𝑢𝑣*, where 𝐼 is the 𝑚×𝑚 identity matrix, and 𝑢, 𝑣 ∈ C𝑚, show
that whenever 𝐴 is invertible, the inverse is of the form 𝐴−1 = 𝐼 + 𝛼𝑢𝑣* where 𝛼 ∈ C, and calculate the form of
𝛼.

The cla_utils.exercises1.rank1pert_inv() function has been left unimplemented. To finish the function,
add code so that it computes 𝐴−1 using your formula (and not any built-in matrix inversion routines). The test
script test_exercises1.py in the test directory will also test this function.

Add a function to cla_utils.exercises1 that measures the time to compute the inverse of 𝐴 for an input matrix
of size 400, and compare with the time to compute the inverse of 𝐴 using the built-in inverse:

numpy.linalg.inv(A)

What do you observe? Why do you think this is? We will examine the cost of general purpose matrix inversion
algorithms later.

2.4 Adjoints and Hermitian matrices
Supplementary video

https://player.vimeo.com/video/450173092

Definition 25 (Adjoint) The adjoint (or Hermitian conjugate) of 𝐴 ∈ C𝑚×𝑛 is a matrix 𝐴* ∈ C𝑛×𝑚 (sometimes
written 𝐴† or 𝐴′), with

𝑎*𝑖𝑗 = 𝑎𝑗𝑖,

where the bar denotes the complex conjugate of a complex number. If 𝐴* = 𝐴 then we say that 𝐴 is Hermitian.

For real matrices, 𝐴* = 𝐴𝑇 . If 𝐴 = 𝐴𝑇 , then we say that the matrix is symmetric.

The following identity is very important when dealing with adjoints.

Theorem 26 For matrices 𝐴, 𝐵 with compatible dimensions (so that they can be multiplied),

(𝐴𝐵)* = 𝐵*𝐴*.

Exercise 27 (This is an advanced exercise if the other exercises are complete. If you are behind on the exercises
please skip this one.)

Consider a matrix 𝐴 = 𝐵 + 𝑖𝐶 where 𝐵,𝐶 ∈ R𝑚×𝑚 and 𝐴 is Hermitian. Show that 𝐵 = 𝐵𝑇 and 𝐶 = −𝐶𝑇 .
To save memory, instead of storing values of 𝐴 (𝑚×𝑚 complex numbers to store), consider equivalently storing
a real-valued 𝑚×𝑚 array 𝐴 with 𝐴𝑖𝑗 = 𝐵𝑖𝑗 for 𝑖 ≥ 𝑗 and 𝐴𝑖𝑗 = 𝐶𝑖𝑗 for 𝑖 < 𝑗.

The cla_utils.exercises1.ABiC() function has been left unimplemented. It should implement matrix vector
multiplication 𝑧 = 𝐴𝑥, returning the real and imaginary parts of 𝑧, given the real and imaginary parts of 𝑥 as

14 Chapter 2. Linear algebra preliminaries

https://player.vimeo.com/video/450172407
https://player.vimeo.com/video/450173092


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

inputs, and given the real array 𝐴 as above. You should implement the multiplication using real arithmetic only,
with just one loop over the entries of 𝑥, using the column space interpretation of matrix-vector multiplication. The
test script test_exercises1.py in the test directory will also test this function.

� Hint

You can use the Python “slice” notation, to assign into a slice of an array, for example:

x[3:5] = y[3:5]

will copy the 4th and 5th entries of 𝑦 (Python numbers from zero, and the upper limit of the slice is the first
index value not to use. For more information, see the Numpy documentation on slicing.

2.5 Inner products and orthogonality
Supplementary video

https://player.vimeo.com/video/450172520

The inner product is a critical tool in computational linear algebra.

Definition 28 (Inner product) Let 𝑥, 𝑦 ∈ C𝑚. Then the inner product of 𝑥 and 𝑦 is

𝑥*𝑦 =

𝑚∑︁
𝑖=1

�̄�𝑖𝑦𝑖.

We will frequently use the natural norm derived from the inner product to define size of vectors.

Definition 29 (2-Norm) Let 𝑥 ∈ C𝑚. Then the 2-norm of 𝑥 is

‖𝑥‖ =

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

|𝑥𝑖|2 =
√
𝑥*𝑥.

Orthogonality will emerge as an early key concept in this course.

Definition 30 (Orthogonal vectors) Let 𝑥, 𝑦 ∈ C𝑚. The two vectors are orthogonal if 𝑥*𝑦 = 0.

Similarly, let 𝑋 , 𝑌 be two sets of vectors. The two sets are orthogonal if

𝑥*𝑦 = 0, ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

A set 𝑆 of vectors is itself orthogonal if

𝑥*𝑦 = 0, ∀𝑥, 𝑦 ∈ 𝑆.

We say that 𝑆 is orthonormal if we also have ‖𝑥‖ = 1 for all 𝑥 ∈ 𝑆.

2.6 Orthogonal components of a vector
Supplementary video

https://player.vimeo.com/video/450184086

Let 𝑆 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} be an orthonormal set of vectors in C𝑚, and take another arbitrary vector 𝑣 ∈ C𝑚. Now
take

𝑟 = 𝑣 − (𝑞*1𝑣)𝑞1 − (𝑞*2𝑣)𝑞2 − . . .− (𝑞*𝑛𝑣)𝑞𝑛.

2.5. Inner products and orthogonality 15

https://numpy.org/doc/stable/reference/arrays.indexing.html
https://player.vimeo.com/video/450172520
https://player.vimeo.com/video/450184086


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Then, we can check that 𝑟 is orthogonal to 𝑆, by calculating for each 1 ≤ 𝑖 ≤ 𝑛,

𝑞*𝑖 𝑟 = 𝑞*𝑖 𝑣 − (𝑞*1𝑣)(𝑞
*
𝑖 𝑞1)− . . .− (𝑞*𝑛𝑣)(𝑞

*
𝑖 𝑞𝑛)

= 𝑞*𝑖 𝑣 − 𝑞*𝑖 𝑣 = 0,

since 𝑞*𝑖 𝑞𝑗 = 0 if 𝑖 ̸= 𝑗, and 1 if 𝑖 = 𝑗. Thus,

𝑣 = 𝑟 +

𝑛∑︁
𝑖=1

(𝑞*𝑖 𝑣)𝑞𝑖 = 𝑟 +

𝑛∑︁
𝑖=1

(𝑞𝑖𝑞
*
𝑖 )⏟  ⏞  

rank-1 matrix

𝑣.

If 𝑆 is a basis for C𝑚, then 𝑛 = 𝑚 and 𝑟 = 0, and we have

𝑣 =

𝑚∑︁
𝑖=1

(𝑞𝑖𝑞
*
𝑖 )𝑣.

Exercise 31 The cla_utils.exercises2.orthog_cpts() function has been left unimplemented. It should
implement the above computation, returning 𝑟 and the coefficients of the component of 𝑣 in each orthonormal
direction. The test script test_exercises2.py in the test directory will test this function.

2.7 Unitary matrices
Supplementary video

https://player.vimeo.com/video/450184373

Definition 32 (Unitary matrices) A matrix 𝑄 ∈ C𝑚×𝑚 is unitary if 𝑄* = 𝑄−1.

For real matrices, a matrix 𝑄 is orthogonal if 𝑄𝑇 = 𝑄−1.

Theorem 33 The columns of a unitary matrix 𝑄 are orthonormal.

Proof 34 We have 𝐼 = 𝑄*𝑄. Then using the column space interpretation of matrix-matrix multiplication,

𝑒𝑗 = 𝑄*𝑞𝑗 ,

where 𝑞𝑗 is the jth column of 𝑄. Taking row i of 𝑒𝑗 , we have

𝛿𝑖𝑗 = 𝑞*𝑖 𝑞𝑗 , where 𝛿𝑖𝑗 =
{︂

1 if 𝑖 = 𝑗,
0 otherwise .

Extending a theme from earlier, we can interpret 𝑄* = 𝑄−1 as representing a change of orthogonal basis. If
𝑄𝑥 = 𝑏, then 𝑥 = 𝑄*𝑏 contains the coefficients of 𝑏 expanded in the basis given by the orthonormal columns of
𝑄.

Exercise 35 The cla_utils.exercises2.solveQ() function has been left unimplemented. Given a square
unitary matrix 𝑄 and a vector 𝑏 it should solve 𝑄𝑥 = 𝑏 using information above (it is not expected to work when
𝑄 is not unitary or square). The test script test_exercises2.py in the test directory will test this function.

Add a function to cla_utils.exercises2 that measures the time to solve 𝑄𝑥 = 𝑏 using solveQ for an input
matrix of sizes 100, 200, 400, and compare with the times to solve the equation using the general purpose solve
(which uses LU factorisation, which we will discuss later):

x = numpy.linalg.solve(Q, b)

What did you expect and was it observed?

A quick way to get an orthogonal matrix is to take a general matrix $A$ and find the QR factorisation, which we
will cover in the next section.

16 Chapter 2. Linear algebra preliminaries

https://player.vimeo.com/video/450184373


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Q, R = numpy.linalg.qr(A)

returns two matrices, of which 𝑄 is orthogonal.

2.8 Vector norms
Supplementary video

https://player.vimeo.com/video/450184674

Various vector norms are useful to measure the size of a vector. In computational linear algebra we need them for
quantifying errors etc.

Definition 36 (Norms) A norm is a function ‖ · ‖ : C𝑚 → R, such that

1. ‖𝑥‖ ≥ 0, and ‖𝑥‖ = 0 =⇒ 𝑥 = 0.

2. ‖𝑥+ 𝑦‖ ≤ ‖𝑥‖+ ‖𝑦‖ (triangle inequality).

3. ‖𝛼𝑥‖ = |𝛼|‖𝑥‖ for all 𝑥 ∈ C𝑚 and 𝛼 ∈ C.

We have already seen the 2-norm, or Euclidean norm, which is part of a larger class of norms called p-norms, with

‖𝑥‖𝑝 =

(︃
𝑚∑︁
𝑖=1

|𝑥𝑖|𝑝
)︃1/𝑝

,

for real 𝑝 > 0. We will also consider weighted norms

‖𝑥‖𝑊,𝑝 = ‖𝑊𝑥‖𝑝,

where 𝑊 is a matrix.

2.9 Projectors and projections
Supplementary video

https://player.vimeo.com/video/450185110

Definition 37 (Projector) A projector 𝑃 is a square matrix that satisfies 𝑃 2 = 𝑃 .

If 𝑣 ∈ range(𝑃 ), then there exists 𝑥 such that 𝑃𝑥 = 𝑣. Then,

𝑃𝑣 = 𝑃 (𝑃𝑥) = 𝑃 2𝑥 = 𝑃𝑥 = 𝑣,

and hence multiplying by 𝑃 does not change 𝑣.

Now suppose that 𝑃𝑣 ̸= 𝑣 (so that 𝑣 /∈ range(𝑃 )). Then,

𝑃 (𝑃𝑣 − 𝑣) = 𝑃 2𝑣 − 𝑃𝑣 = 𝑃𝑣 − 𝑃𝑣 = 0,

which means that 𝑃𝑣 − 𝑣 is the nullspace of 𝑃 . We have

𝑃𝑣 − 𝑣 = −(𝐼 − 𝑃 )𝑣.

2.8. Vector norms 17

https://player.vimeo.com/video/450184674
https://player.vimeo.com/video/450185110


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Definition 38 (Complementary projector) Let 𝑃 be a projector. Then we call 𝐼 −𝑃 the complementary projec-
tor.

To see that 𝐼 − 𝑃 is also a projector, we just calculate,

(𝐼 − 𝑃 )2 = 𝐼2 − 2𝑃 + 𝑃 2 = 𝐼 − 2𝑃 + 𝑃 = 𝐼 − 𝑃.

If 𝑃𝑢 = 0, then (𝐼 − 𝑃 )𝑢 = 𝑢.

In other words, the nullspace of 𝑃 is contained in the range of 𝐼 − 𝑃 .

On the other hand, if 𝑣 is in the range of 𝐼 − 𝑃 , then there exists some 𝑤 such that

𝑣 = (𝐼 − 𝑃 )𝑤 = 𝑤 − 𝑃𝑤.

We have

𝑃𝑣 = 𝑃 (𝑤 − 𝑃𝑤) = 𝑃𝑤 − 𝑃 2𝑤 = 𝑃𝑤 − 𝑃𝑤 = 0.

Hence, the range of 𝐼 − 𝑃 is contained in the nullspace of 𝑃 . Combining these two results we see that the range
of 𝐼 −𝑃 is equal to the nullspace of 𝑃 . Since 𝑃 is the complementary projector to 𝐼 −𝑃 , we can repeat the same
argument to show that the range of 𝑃 is equal to the nullspace of 𝐼 − 𝑃 .

We see that a projector 𝑃 separates C𝑚 into two subspaces, the nullspace of 𝑃 and the range of 𝑃 . In fact the
converse is also true: given two subspaces 𝑆1 and 𝑆2 of C𝑚 with 𝑆1 ∩ 𝑆2 = {0}, then there exists a projector 𝑃
whose range is 𝑆1 and whose nullspace is 𝑆2.

Supplementary video

https://player.vimeo.com/video/450185494

Now we introduce orthogonality into the concept of projectors.

Definition 39 (Orthogonal projector) 𝑃 is an orthogonal projector if

(𝑃𝑣)*(𝑃𝑣 − 𝑣) = 0, ∀𝑣 ∈ C𝑚.

In this case, 𝑃 separates the space into two orthogonal subspaces.

2.10 Constructing orthogonal projectors from sets of orthonormal
vectors

Let {𝑞1, . . . , 𝑞𝑛} be an orthonormal set of vectors in C𝑚. We write

�̂� =
(︀
𝑞1 𝑞2 . . . 𝑞𝑛

)︀
.

Previously we showed that for any 𝑣 ∈ C𝑚, we have

𝑣 = 𝑟⏟ ⏞ 
Orthogonal to column space of �̂�

+

𝑛∑︁
𝑖=1

(𝑞𝑖𝑞
*
𝑖 )𝑣⏟  ⏞  

in the column space of �̂�

.

Hence, the map

𝑣 ↦→ 𝑃𝑣 =

𝑛∑︁
𝑖=1

(𝑞𝑖𝑞
*
𝑖 )⏟  ⏞  

=𝑃

𝑣,

is an orthogonal projector. In fact, 𝑃 has very simple form.

18 Chapter 2. Linear algebra preliminaries

https://player.vimeo.com/video/450185494


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Theorem 40 The orthogonal projector 𝑃 takes the form

𝑃 = �̂��̂�*.

Proof 41 From the change of basis interpretation of multiplication by �̂�*, the entries in �̂�*𝑣 gives coefficients of
the projection of 𝑣 onto the column space of �̂� when expanded using the columns as a basis. Then, multiplication
by �̂� gives the projection of 𝑣 expanded again in the canonical basis. Hence, multiplication by �̂��̂�* gives exactly
the same result as multiplication by the formula for 𝑃 above.

This means that �̂��̂�* is an orthogonal projection onto the range of �̂�. The complementary projector is 𝑃⊥ =
𝐼 − �̂��̂�* is an orthogonal projection onto the nullspace of �̂�.

An important special case is when �̂� has just one column, and then

𝑃 = 𝑞1𝑞
*
1 , 𝑃⊥ = 𝐼 − 𝑞1𝑞

*
1 .

We notice that 𝑃 * = (�̂��̂�*) = �̂��̂�* = 𝑃 . In fact the following is true.

Theorem 42 𝑃 = 𝑃 * if and only if �̂� is orthogonal.

Exercise 43 The cla_utils.exercises2.orthog_proj() function has been left unimplemented. Given an
orthonormal set 𝑞1, 𝑞2, . . . , 𝑞𝑛, it should provide the orthogonal projector 𝑃 . The test script test_exercises2.
py in the test directory will also test this function.

2.10. Constructing orthogonal projectors from sets of orthonormal vectors 19



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

20 Chapter 2. Linear algebra preliminaries



CHAPTER

THREE

QR FACTORISATION

A common theme in computational linear algebra is transformations of matrices and algorithms to implement them.
A transformation is only useful if it can be computed efficiently and sufficiently free of pollution from truncation
errors (either due to finishing an iterative algorithm early, or due to round-off errors). A particularly powerful and
insightful transformation is the QR factorisation. In this section we will introduce the QR factorisation and some
good and bad algorithms to compute it.

3.1 What is the QR factorisation?
Supplementary video

https://player.vimeo.com/video/450191857

We start with another definition.

Definition 44 (Upper triangular matrix) An 𝑚×𝑛 upper triangular matrix 𝑅 has coefficients satisfying 𝑟𝑖𝑗 = 0
when 𝑖 > 𝑗.

It is called upper triangular because the nonzero rows form a triangle on and above the main diagonal of 𝑅.

Now we can describe the QR factorisation.

Definition 45 (QR factorisation) A QR factorisation of an 𝑚× 𝑛 matrix 𝐴 consists of an 𝑚×𝑚 unitary matrix
𝑄 and an 𝑚× 𝑛 upper triangular matrix 𝑅 such that 𝐴 = 𝑄𝑅.

The QR factorisation is a key tool in analysis of datasets, and polynomial fitting. It is also at the core of one of
the most widely used algorithms for finding eigenvalues of matrices. We shall discuss all of this later during this
course.

When 𝑚 > 𝑛, 𝑅 must have all zero rows after the 𝑛 th row. Hence, it makes sense to only work with the top 𝑛×𝑛
block of 𝑅 consisting of the first 𝑛 rows, which we call �̂�. Similarly, in the matrix-matrix product 𝑄𝑅, all columns
of 𝑄 beyond the 𝑛 th column get multiplied by those zero rows in 𝑅, so it makes sense to only work with the first
𝑛 columns of 𝑄, which we call �̂�. We then have the reduced QR factorisation, �̂��̂�.

Exercise 46 The cla_utils.exercises2.orthog_space() function has been left unimplemented. Given a set
of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 that span the subspace 𝑈 ⊂ C𝑚, the function should find an orthonormal basis for the
orthogonal complement 𝑈⊥ given by

𝑈⊥ = {𝑥 ∈ C𝑚 : 𝑥*𝑣 = 0, ∀𝑣 ∈ 𝑈}.

It is expected that it will only compute this up to a tolerance. You should make use of the built in QR factorisation
routine numpy.linalg.qr(). The test script test_exercises2.py in the test directory will test this function.

In the rest of this section we will examine some algorithms for computing the QR factorisation, before discussing
the application to least squares problems. We will start with a bad algorithm, before moving on to some better
ones.

21

https://player.vimeo.com/video/450191857
https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

3.2 QR factorisation by classical Gram-Schmidt algorithm
Supplementary video

https://player.vimeo.com/video/450192200

The classical Gram-Schmidt algorithm for QR factorisation is motivated by the column space interpretation of
the matrix-matrix multiplication 𝐴 = 𝑄𝑅, namely that the jth column 𝑎𝑗 of 𝐴 is a linear combination of the
orthonormal columns of 𝑄, with the coefficients given by the jth column 𝑟𝑗 of 𝑅.

The first column of 𝑅 only has a non-zero entry in the first row, so the first column of 𝑄 must be proportional to
𝐴, but normalised (i.e. rescaled to have length 1). The scaling factor is this first row of the first column of 𝑅. The
second column of 𝑅 has only non-zero entries in the first two rows, so the second column of 𝐴 must be writeable
as a linear combination of the first two columns of 𝑄. Hence, the second column of 𝑄 must by the second column
of 𝐴 with the first column of 𝑄 projected out, and then normalised. The first row of the second column of 𝑅 is
then the coefficient for this projection, and the second row is the normalisation scaling factor. The third row of 𝑄
is then the third row of 𝐴 with the first two columns of 𝑄 projected out, and so on.

Hence, finding a QR factorisation is equivalent to finding an orthonormal spanning set for the columns of 𝐴, where
the span of the first 𝑗 elements of the spanning set and of the first 𝑗 columns of 𝐴 is the same, for 𝑗 = 1, . . . , 𝑛.

Hence we have to find 𝑅 coefficients such that

𝑞1 =
𝑎1
𝑟11

,

𝑞2 =
𝑎2 − 𝑟12𝑞1

𝑟22
...

𝑞𝑛 =
𝑎𝑛 −

∑︀𝑛−1
𝑖=1 𝑟𝑖𝑛𝑞𝑖

𝑟𝑛𝑛
,

with (𝑞1, 𝑞2, . . . , 𝑞𝑛) an orthonormal set. The non-diagonal entries of 𝑅 are found by inner products, i.e.,

𝑟𝑖𝑗 = 𝑞*𝑖 𝑎𝑗 , 𝑖 < 𝑗,

and the diagonal entries are chosen so that ‖𝑞𝑖‖ = 1, for 𝑖 = 1, 2, . . . , 𝑛, i.e.

|𝑟𝑗𝑗 | =

⃦⃦⃦⃦
⃦𝑎𝑗 −

𝑗−1∑︁
𝑖=1

𝑟𝑖𝑗𝑞𝑖

⃦⃦⃦⃦
⃦ .

Note that this absolute value does leave a degree of nonuniqueness in the definition of 𝑅. It is standard to choose
the diagonal entries to be real and non-negative.

We now present the classical Gram-Schmidt algorithm as pseudo-code.

• FOR 𝑗 = 1 TO 𝑛

– 𝑣𝑗 ← 𝑎𝑗

– FOR 𝑖 = 1 TO 𝑗 − 1

∗ 𝑟𝑖𝑗 ← 𝑞*𝑖 𝑎𝑗

– END FOR

– FOR 𝑖 = 1 TO 𝑗 − 1

∗ 𝑣𝑗 ← 𝑣𝑗 − 𝑟𝑖𝑗𝑞𝑖

– END FOR

– 𝑟𝑗𝑗 ← ‖𝑣𝑗‖2
– 𝑞𝑗 ← 𝑣𝑗/𝑟𝑗𝑗

• END FOR

22 Chapter 3. QR factorisation

https://player.vimeo.com/video/450192200


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

(Remember that Python doesn’t have END FOR statements, but instead uses indentation to terminate code blocks.
We’ll write END statements for code blocks in pseudo-code in these notes.)

Exercise 47 (‡) The cla_utils.exercises2.GS_classical() function has been left unimplemented. It
should implement the classical Gram-Schmidt algorithm above, using Numpy slice notation so that only one Python
for loop is used. The function should work “in place” by changing the values in 𝐴, without introducing additional
intermediate arrays (you will need to create a new array to store 𝑅). The test script test_exercises2.py in the
test directory will test this function.

� Hint

The (‡) symbol in an exercise indicates that the code for that exercise is in scope for use in the coursework.
When the code is used in the coursework, we will grade the code quality, for appropriate use of Numpy slice
operations, efficient use of array memory, loop minimisation, and avoiding computation inside loops that could
be done beforehand.

3.3 Projector interpretation of Gram-Schmidt
Supplementary video

https://player.vimeo.com/video/450192723

At each step of the Gram-Schmidt algorithm, a projector is applied to a column of 𝐴. We have

𝑞1 =
𝑃1𝑎1
‖𝑃1𝑎1‖

,

𝑞2 =
𝑃2𝑎2
‖𝑃2𝑎2‖

,

...

𝑞𝑛 =
𝑃𝑛𝑎𝑛
‖𝑃𝑛𝑎𝑛‖

,

where 𝑃𝑗 are orthogonal projectors that project out the first 𝑗− 1 columns (𝑞1, . . . , 𝑞𝑗−1) (𝑃1 is the identity as this
set is empty when 𝑗 = 1). The orthogonal projector onto the first 𝑗 − 1 columns is �̂�𝑗−1�̂�

*
𝑗−1, where

�̂�𝑗−1 =
(︀
𝑞1 𝑞2 . . . 𝑞𝑗−1

)︀
.

Hence, 𝑃𝑗 is the complementary projector, 𝑃𝑗 = 𝐼 − �̂�𝑗−1�̂�
*
𝑗−1.

3.4 Modified Gram-Schmidt
Supplementary video

https://player.vimeo.com/video/450193303

There is a big problem with the classical Gram-Schmidt algorithm. It is unstable, which means that when it is
implemented in inexact arithmetic on a computer, round-off error unacceptably pollutes the entries of 𝑄 and 𝑅,
and the algorithm is not useable in practice. What happens is that the columns of 𝑄 are not quite orthogonal, and
this loss of orthogonality spoils everything. We will discuss stability later in the course, but right now we will just
discuss the fix for the classical Gram-Schmidt algorithm, which is based upon the projector interpretation which
we just discussed.

To reorganise Gram-Schmidt to avoid instability, we decompose 𝑃𝑗 into a sequence of 𝑗 − 1 projectors of rank
𝑚− 1, that each project out one column of 𝑄, i.e.

𝑃𝑗 = 𝑃⊥𝑞𝑗−1
. . . 𝑃⊥𝑞2𝑃⊥𝑞1 ,

3.3. Projector interpretation of Gram-Schmidt 23

https://player.vimeo.com/video/450192723
https://player.vimeo.com/video/450193303


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

where

𝑃⊥𝑞𝑗 = 𝐼 − 𝑞𝑗𝑞
*
𝑗 .

Then,

𝑣𝑗 = 𝑃𝑗𝑎𝑗 = 𝑃⊥𝑞𝑗−1
. . . 𝑃⊥𝑞2𝑃⊥𝑞1𝑎𝑗 .

Here we notice that we must apply 𝑃⊥𝑞1 to all but one columns of 𝐴, and 𝑃⊥𝑞2 to all but two columns of 𝐴, 𝑃⊥𝑞3

to all but three columns of 𝐴, and so on.

By doing this, we gradually transform 𝐴 to a unitary matrix, as follows.

𝐴 =
(︀
𝑎1 𝑎2 𝑎3 . . . 𝑎𝑛

)︀(︀
𝑞1 𝑣12 𝑣13 . . . 𝑣1𝑛

)︀
→
(︀
𝑞1 𝑞2 𝑣23 . . . 𝑣2𝑛

)︀
. . .→

(︀
𝑞1 𝑞2 𝑞3 . . . 𝑞𝑛

)︀
.

Then it is just a matter of keeping a record of the coefficients of the projections and normalisation scaling factors
and storing them in 𝑅.

This process is mathematically equivalent to the classical Gram-Schmidt algorithm, but the arithmetic operations
happen in a different order, in a way that turns out to reduce accumulation of round-off errors.

We now present this modified Gram-Schmidt algorithm as pseudo-code.

• FOR 𝑖 = 1 TO 𝑛

– 𝑣𝑖 ← 𝑎𝑖

• END FOR

• FOR 𝑖 = 1 TO 𝑛

– 𝑟𝑖𝑖 ← ‖𝑣𝑖‖2
– 𝑞𝑖 = 𝑣𝑖/𝑟𝑖𝑖

– FOR 𝑗 = 𝑖+ 1 TO 𝑛

∗ 𝑟𝑖𝑗 ← 𝑞*𝑖 𝑣𝑗

∗ 𝑣𝑗 ← 𝑣𝑗 − 𝑟𝑖𝑗𝑞𝑖

– END FOR

• END FOR

This algorithm can be applied “in place”, overwriting the entries in 𝐴 with the 𝑣 s and eventually the 𝑞 s.

Exercise 48 (‡) The cla_utils.exercises2.GS_modified() function has been left unimplemented. It should
implement the modified Gram-Schmidt algorithm above, using Numpy slice notation where possible. What is the
minimal number of Python for loops possible?

The function should work “in place” by changing the values in 𝐴, without introducing additional intermediate
arrays (you will need to create a new array to store𝑅). The test script test_exercises2.py in the test directory
will test this function.

Exercise 49 Investigate the mutual orthogonality of the 𝑄 matrices that are produced by your classical and modi-
fied Gram-Schmidt implementations. Is there a way to test mutual orthogonality without writing a loop? Round-off
typically causes problems for matrices with large condition numbers and large off-diagonal values. You could
also try the opposite of what was done in test_GS_classical: instead of ensuring that all of the entries in the
diagonal matrix 𝐷 are𝒪(1), try making some of the values small and some large. See if you can find a matrix that
illustrates the differences in orthogonality between the two algorithms.

24 Chapter 3. QR factorisation



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

3.5 Modified Gram-Schmidt as triangular orthogonalisation
Supplementary video

https://player.vimeo.com/video/450193575

This iterative transformation process can be written as right-multiplication by an upper triangular matrix. For
example, at the first iteration,

(︀
𝑣01 𝑣02 . . . 𝑣0𝑛

)︀⏟  ⏞  
𝐴

⎛⎜⎜⎜⎜⎜⎝
1

𝑟11
− 𝑟12

𝑟11
. . . . . . − 𝑟1𝑛

𝑟11
0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . . . . .
...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝑅1

=
(︀
𝑞1 𝑣12 . . . 𝑣1𝑛

)︀⏟  ⏞  
𝐴1

.

To understand this equation, we can use the column space interpretation of matrix-matrix multiplication. The
columns of 𝐴1 are linear combinations of the columns of 𝐴 with coefficients given by the columns of 𝑅1. Hence,
𝑞1 only depends on 𝑣01 , scaled to have length 1, and 𝑣1𝑖 is a linear combination of (𝑣01 , 𝑣0𝑖 ) such that 𝑣1𝑖 is orthogonal
to 𝑞1, for 1 < 𝑖 ≤ 𝑛.

Similarly, the second iteration may be written as

(︀
𝑣11 𝑣12 . . . 𝑣1𝑛

)︀⏟  ⏞  
𝐴1

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1

𝑟22
− 𝑟23

𝑟22
. . . − 𝑟2𝑛

𝑟22
0 0 1 . . . 0
...

. . . . . . . . .
...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝑅2

=
(︀
𝑞1 𝑞2 𝑣23 . . . 𝑣2𝑛

)︀⏟  ⏞  
𝐴2

.

It should become clear that each transformation from 𝐴𝑖 to 𝐴𝑖+1 takes place by right multiplication by an upper
triangular matrix 𝑅𝑖+1, which is an identity matrix plus entries in row i. By combining these transformations
together, we obtain

𝐴𝑅1𝑅2 . . . 𝑅𝑛⏟  ⏞  
�̂�−1

= �̂�.

Since upper triangular matrices form a group, the product of the 𝑅𝑖 matrices is upper triangular. Further, all the 𝑅𝑖

matrices have non-zero determinant, so the product is invertible, and we can write this as �̂�−1. Right multiplication
by �̂� produces the usual reduced QR factorisation. We say that modified Gram-Schmidt implements triangular
orthogonalisation: the transformation of 𝐴 to an orthogonal matrix by right multiplication of upper triangular
matrices.

This is a powerful way to view the modified Gram-Schmidt process from the point of view of understanding and
analysis, but of course we do not form the matrices 𝑅𝑖 explicitly (we just follow the pseudo-code given above).

Exercise 50 In a break from the format so far, the cla_utils.exercises2.GS_modified_R() function has
been implemented. It implements the modified Gram-Schmidt algorithm in the form describe above using upper
triangular matrices. This is not a good way to implement the algorithm, because of the inversion of 𝑅 at the end,
and the repeated multiplication by zeros in multiplying entries of the 𝑅𝑘 matrices, which is a waste. However it
is important as a conceptual tool for understanding the modified Gram-Schmidt algorithm as a triangular orthog-
onalisation process, and so it is good to see this in a code implementation. Study this function to check that you
understand what is happening.

However, the cla_utils.exercises2.GS_modified_get_R() function has not been implemented. This func-
tion computes the 𝑅𝑘 matrices at each step of the process. Complete this code. The test script test_exercises2.
py in the test directory will also test this function.

3.5. Modified Gram-Schmidt as triangular orthogonalisation 25

https://player.vimeo.com/video/450193575


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

3.6 Householder triangulation
Supplementary video

https://player.vimeo.com/video/450199222

This view of the modified Gram-Schmidt process as triangular orthogonalisation gives an idea to build an alterna-
tive algorithm. Instead of right multiplying by upper triangular matrices to transform 𝐴 to �̂�, we can consider left
multiplying by unitary matrices to transform 𝐴 to 𝑅,

𝑄𝑛 . . . 𝑄2𝑄1⏟  ⏞  
=𝑄*

𝐴 = 𝑅.

Multiplying unitary matrices produces unitary matrices, so we obtain 𝐴 = 𝑄𝑅 as a full factorisation of 𝐴.

Supplementary video

https://player.vimeo.com/video/450199366

To do this, we need to work on the columns of 𝐴, from left to right, transforming them so that each column has
zeros below the diagonal. These unitary transformations need to be designed so that they don’t spoil the structure
created in previous columns. The easiest way to ensure this is construct a unitary matrix 𝑄𝑘 with an identity matrix
as the (𝑘 − 1)× (𝑘 − 1) submatrix,

𝑄𝑘 =

(︂
𝐼𝑘−1 0
0 𝐹

)︂
.

This means that multiplication by 𝑄𝑘 won’t change the first 𝑘− 1 rows, leaving the previous work to remove zeros
below the diagonal undisturbed. For 𝑄𝑘 to be unitary and to transform all below diagonal entries in column 𝑘 to
zero, we need the (𝑛− 𝑘 + 1)× (𝑛− 𝑘 + 1) submatrix 𝐹 to also be unitary, since

𝑄*
𝑘 =

(︂
𝐼𝑘−1 0
0 𝐹 *

)︂
, 𝑄−1

𝑘 =

(︂
𝐼𝑘−1 0
0 𝐹−1

)︂
.

We write the 𝑘 th column 𝑣𝑘𝑘 of 𝐴𝑘 as

𝑣𝑘𝑘 =

(︂
𝑣𝑘𝑘
𝑥

)︂
,

where 𝑣𝑘𝑘 contains the first 𝑘 − 1 entries of 𝑣𝑘𝑘 . The column gets transformed according to

𝑄𝑘𝑣
𝑘
𝑘 =

(︂
𝑣𝑘𝑘
𝐹𝑥

)︂
.

and our goal is that 𝐹𝑥 is zero, except for the first entry (which becomes the diagonal entry of 𝑄𝑘𝑣
𝑘
𝑘 ). Since 𝐹 is

unitary, we must have ‖𝐹𝑥‖ = ‖𝑥‖. For now we shall specialise to real matrices, so we choose to have

𝐹𝑥 = ±‖𝑥‖𝑒1,

26 Chapter 3. QR factorisation

https://player.vimeo.com/video/450199222
https://player.vimeo.com/video/450199366


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

where we shall consider the sign later. Complex matrices have a more general formula for Householder transfor-
mations which we shall not discuss here.

We can achieve this by using a Householder reflector for 𝐹 , which is a unitary transformation that does precisely
what we need. Geometrically, the idea is that we consider a line joining 𝑥 and 𝐹𝑥 = ±‖𝑥‖𝑒1, which points in the
direction 𝑣 = ±‖𝑥‖𝑒1 − 𝑥. We can transform 𝑥 to 𝐹𝑥 by a reflection in the hyperplane 𝐻 that is orthogonal to 𝑣.
Since reflections are norm preserving, 𝐹 must be unitary. Applying the projector 𝑃 given by

𝑃𝑥 =

(︂
𝐼 − 𝑣𝑣*

𝑣*𝑣

)︂
𝑥,

does half the job, producing a vector in 𝐻 . To do a reflection we need to go twice as far,

𝐹𝑥 =

(︂
𝐼 − 2

𝑣𝑣*

𝑣*𝑣

)︂
𝑥.

We can check that this does what we want,

𝐹𝑥 =

(︂
𝐼 − 2

𝑣𝑣*

𝑣*𝑣

)︂
𝑥,

= 𝑥− 2
(±‖𝑥‖𝑒1 − 𝑥)

‖ ± ‖𝑥‖𝑒1 − 𝑥‖2
(±‖𝑥‖𝑒1 − 𝑥)*𝑥,

= 𝑥− 2
(±‖𝑥‖𝑒1 − 𝑥)

‖ ± ‖𝑥‖𝑒1 − 𝑥‖2
‖𝑥‖(±𝑥1 − ‖𝑥‖),

= 𝑥+ (±‖𝑥‖𝑒1 − 𝑥) = ±‖𝑥‖𝑒1,

as required, having checked that (assuming 𝑥 is real)

‖ ± ‖𝑥‖𝑒1 − 𝑥‖2 = ‖𝑥‖2 ∓ 2‖𝑥‖𝑥1 + ‖𝑥‖2 = −2‖𝑥‖(±𝑥1 − ‖𝑥‖).

We can also check that 𝐹 is unitary. First we check that 𝐹 is Hermitian,

(︂
𝐼 − 2

𝑣𝑣*

𝑣*𝑣

)︂*

= 𝐼 − 2
(𝑣𝑣*)*

𝑣*𝑣
,

= 𝐼 − 2
(𝑣*)*𝑣*

𝑣*𝑣
,

= 𝐼 − 2
𝑣𝑣*

𝑣*𝑣
= 𝐹.

Now we use this to show that 𝐹 is unitary,

𝐹 *𝐹 =

(︂
𝐼 − 2

𝑣𝑣*

𝑣*𝑣

)︂(︂
𝐼 − 2

𝑣𝑣*

𝑣*𝑣

)︂
= 𝐼 − 4

𝑣𝑣*

𝑣*𝑣
+ 4

𝑣𝑣*

𝑣*𝑣

𝑣𝑣*

𝑣*𝑣
= 𝐼,

so 𝐹 * = 𝐹−1. In summary, we have constructed a unitary matrix 𝑄𝑘 that transforms the entries below the diagonal
of the kth column of 𝐴𝑘 to zero, and leaves the previous 𝑘 − 1 columns alone.

Supplementary video

3.6. Householder triangulation 27



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

https://player.vimeo.com/video/450200163

Earlier, we mentioned that there is a choice of sign in 𝑣. This choice gives us the opportunity to improve the
numerical stability of the algorithm. In the case of real matrices, to avoid unnecessary numerical round off, we
choose the sign that makes 𝑣 furthest from 𝑥, i.e.

𝑣 = sign(𝑥1)‖𝑥‖𝑒1 + 𝑥.

(Exercise, show that this choice of sign achieves this.) It is critical that we use a definition of sign that always
returns a number that has magnitude 1, so we conventionally choose sign(0) = 1.

� Hint

Note that the numpy.sign function has sign(0) = 0, so you need to take care of this case separately in your
Python implementation.

For complex valued matrices, the Householder reflection uses 𝑥1/|𝑥1| (except for 𝑥1 = 0where we use 1 as above).

We are now in a position to describe the algorithm in pseudo-code. Here it is described an “in-place” algorithm,
where the successive transformations to the columns of 𝐴 are implemented as replacements of the values in 𝐴.
This means that we can allocate memory on the computer for 𝐴 which is eventually replaced with the values for
𝑅. To present the algorithm, we will use the “slice” notation to describe submatrices of 𝐴, with 𝐴𝑘:𝑙,𝑟:𝑠 being the
submatrix of 𝐴 consisting of the rows from 𝑘 to 𝑙 and columns from 𝑟 to 𝑠.

• FOR 𝑘 = 1 TO 𝑛

– 𝑥 = 𝐴𝑘:𝑚,𝑘

– 𝑣𝑘 ← sign(𝑥1)‖𝑥‖2𝑒1 + 𝑥

– 𝑣𝑘 ← 𝑣𝑘/‖𝑣𝑘‖

– 𝐴𝑘:𝑚,𝑘:𝑛 ← 𝐴𝑘:𝑚,𝑘:𝑛 − 2𝑣𝑘(𝑣
*
𝑘𝐴𝑘:𝑚,𝑘:𝑛).

• END FOR

Exercise 51 (‡) The cla_utils.exercises3.householder() function has been left unimplemented. It should
implement the algorithm above, using only one loop over 𝑘. It should return the resulting 𝑅 matrix. The test script
test_exercises3.py in the test directory will test this function.

� Hint

The “slice” notation using colons “:” is more an more important when we are doing operations on submatrices.
For example,

� Hint

Don’t forget that Python numbers from zero, which will be important when implementing the submatrices using
Numpy slice notation.

� Hint

The Python functions “inner”, “outer”, and “dot” are very useful for succinctly expressing many linear algebra
operations. “inner(a,b)” multiplies each component of a multidimensional array 𝑎 with the corresponding
component of another array 𝑏 (with the same “shape”) and sums over all indices. “dot(a, b)” only sums over

28 Chapter 3. QR factorisation

https://player.vimeo.com/video/450200163


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

the last index of 𝑎 and the first index of 𝑏. For some algorithms it may be necessary to swap the order of 𝑎 and
𝑏 and make use of transposes to sum over the correct index.

Supplementary video

https://player.vimeo.com/video/450201578

Note that we have not explicitly formed the matrix 𝑄 or the product matrices 𝑄𝑖. In some applications, such as
solving least squares problems, we don’t explicitly need 𝑄, just the matrix-vector product 𝑄*𝑏 with some vector 𝑏.
To compute this product, we can just apply the same operations to 𝑏 that are applied to the columns of 𝐴. This can
be expressed in the following pseudo-code, working “in place” in the storage of 𝑏.

• FOR 𝑘 = 1 TO 𝑛

– 𝑏𝑘:𝑚 ← 𝑏𝑘:𝑚 − 2𝑣𝑘(𝑣
*
𝑘𝑏𝑘:𝑚)

• END FOR

We call this procedure “implicit multiplication”.

Supplementary video

https://player.vimeo.com/video/450202242

In this section we will frequently encounter systems of the form

�̂�𝑥 = 𝑦.

This is an upper triangular system that can be solved efficiently using back-substitution.

Written in components, this equation is

𝑅11𝑥1 +𝑅12𝑥2 + . . .+𝑅1(𝑚−1)𝑥𝑚−1 +𝑅1𝑚𝑥𝑚 = 𝑦1,

0𝑥1 +𝑅22𝑥2 + . . .+𝑅2(𝑚−1)𝑥𝑚−1 +𝑅2𝑚𝑥𝑚 = 𝑦2,

...
0𝑥1 + 0𝑥2 + . . .+𝑅(𝑚−1)(𝑚−1)𝑥𝑚−1 +𝑅(𝑚−1)𝑚𝑥𝑚 = 𝑦𝑚−1,

0𝑥1 + 0𝑥2 + . . .+ 0𝑥𝑚−1 +𝑅𝑚𝑚𝑥𝑚 = 𝑦𝑚.

The last equation yields 𝑥𝑚 directly by dividing by 𝑅𝑚𝑚, then we can use this value to directly compute 𝑥𝑚−1.
This is repeated for all of the entries of 𝑥 from 𝑚 down to 1. This procedure is called back substitution, which we
summarise in the following pseudo-code.

• 𝑥𝑚 ← 𝑦𝑚/𝑅𝑚𝑚

• FOR 𝑖 = 𝑚− 1 TO 1 (BACKWARDS)

– 𝑥𝑖 ← (𝑦𝑖 −
∑︀𝑚

𝑘=𝑖+1 𝑅𝑖𝑘𝑥𝑘)/𝑅𝑖𝑖

Exercise 52 (‡) The function cla_utils.exercises3.solve_U() has been left unimplemented. It should use
backward substitution to solve upper triangular systems. The interfaces are set so that multiple right hand sides can
be provided and solved at the same time. The functions should only use one loop over the rows of 𝑈 , to efficiently
solve the multiple problems. The test script test_exercises3.py in the test directory will test these functions.

Exercise 53 (‡) Show that the implicit multiplication procedure is equivalent to computing an extended array

𝐴 =
(︀
𝑎1 𝑎2 . . . 𝑎𝑛 𝑏

)︀
and performing Householder on the first 𝑛 rows. Transform the equation 𝐴𝑥 = 𝑏 into 𝑅𝑥 = �̂� where 𝑄𝑅 = 𝐴,
and find the form of �̂�, explaining how to get �̂� from Householder applied to 𝐴 above. Solving systems with upper
triangular matrices is much cheaper than solving general matrix systems as we shall discuss later.

3.6. Householder triangulation 29

https://player.vimeo.com/video/450201578
https://player.vimeo.com/video/450202242


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Now, say that we want to solve multiple equations

𝐴𝑥𝑖 = 𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑘,

which have the same matrix 𝐴 but different right hand sides 𝑏 = 𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑘. Extend this idea above to the
case 𝑘 > 1, by describing an extended 𝐴 containing all the 𝑏𝑖 vectors.

The cla_utils.exercises3.householder_solve() function has been left unimplemented. It takes in a set
of right hand side vectors 𝑏1, 𝑏2, . . . , 𝑏𝑘 and returns a set of solutions 𝑥1, 𝑥2, . . . , 𝑥𝑘. In the course of solving, it
should construct an extended array 𝐴, and then pass it to cla_utils.exercises3.householder(). You will
also need cla_utils.exercises3.solve_U().

If we really need 𝑄, we can get it by matrix-vector products with each element of the canonical basis
(𝑒1, 𝑒2, . . . , 𝑒𝑛). This means that first we need to compute a matrix-vector product 𝑄𝑥 with a vector 𝑥. One
way to do this is to apply the Householder reflections in reverse, since

𝑄 = (𝑄𝑛 . . . 𝑄2𝑄1)
* = 𝑄1𝑄2 . . . 𝑄𝑛,

having made use of the fact that the Householder reflections are Hermitian. This can be expressed in the following
pseudo-code.

• FOR 𝑘 = 𝑛 TO 1 (DOWNWARDS)

– 𝑥𝑘:𝑚 ← 𝑥𝑘:𝑚 − 2𝑣𝑘(𝑣
*
𝑘𝑥𝑘:𝑚)

• END FOR

Note that this requires to record all of the history of the 𝑣 vectors, whilst the 𝑄* application algorithm above can
be interlaced with the steps of the Householder algorithm, using the 𝑣 values as they are needed and throwing them
away. Then we can compute 𝑄 via

𝑄 =
(︀
𝑄𝑒1 𝑄𝑒2 . . . 𝑄𝑒𝑛

)︀
,

with each column using the 𝑄 application algorithm described above.

Exercise 54 (‡) Show that the implicit multiplication procedure applied to the columns of 𝐼 produces 𝑄*, from
which we can easily obtain 𝑄, explaining how. Show how to implement this by applying Householder to an aug-
mented matrix 𝐴 of some appropriate form.

The cla_utils.exercises3.householder_qr() function has been left unimplemented. It takes in the 𝑚× 𝑛
array 𝐴 and returns 𝑄 and 𝑅. It should use the method of this exercise to compute them by forming an appropri-
ate 𝐴, calling cla_utils.exercises3.householder() and then extracting appropriate subarrays using slice
notation. The test script test_exercises3.py in the test directory will also test this function.

3.7 Application: Least squares problems
Supplementary video

https://player.vimeo.com/video/450202726

Least square problems are relevant in data fitting problems, optimisation and control, and are also a crucial in-
gredient of modern massively parallel linear system solver algorithms such as GMRES, which we shall encounter
later in the course. They are a way of solving “long thin” matrix vector problems 𝐴𝑥 = 𝑏 where we want to obtain
𝑥 ∈ C𝑛 from 𝑏 ∈ C𝑚 with 𝐴 an 𝑚×𝑛 matrix. Often the problem does not have a solution as it is overdetermined
for 𝑚 > 𝑛. Instead we just seek 𝑥 that minimises the 2-norm of the residual 𝑟 = 𝑏−𝐴𝑥, i.e. 𝑥 is the minimiser of

𝑚𝑖𝑛𝑥‖𝐴𝑥− 𝑏‖2.

30 Chapter 3. QR factorisation

https://player.vimeo.com/video/450202726


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

This residual will not be zero in general, when 𝑏 is not in the range of 𝐴. The nearest point in the range of 𝐴 to 𝑏 is
𝑃𝑏, where 𝑃 is the orthogonal projector onto the range of 𝐴. From theorem {number}, we know that 𝑃 = �̂��̂�*,
where �̂� from the reduced 𝑄𝑅 factorisation has the same column space as 𝐴 (but with orthogonal columns).

Then, we just have to solve

𝐴𝑥 = 𝑃𝑏,

which is now solveable since 𝑃𝑏 is in the column space of 𝐴 (and hence can be written as a linear combination of
the columns of 𝐴 i.e. as a matrix-vector product 𝐴𝑥 for some unknown 𝑥).

Now we have the reduced 𝑄𝑅 factorisation of 𝐴, and we can write

�̂��̂�𝑥 = �̂��̂�*𝑏.

Left multiplication by �̂�* then gives

�̂�𝑥 = �̂�*𝑏.

This is an upper triangular system that can be solved efficiently using back-substitution.

Exercise 55 (‡) The cla_utils.exercises3.householder_ls() function has been left unimplemented. It
takes in the 𝑚 × 𝑛 array 𝐴 and a right-hand side vector 𝑏 and solves the least squares problem min-
imising ‖𝐴𝑥 − 𝑏‖ over 𝑥. It should do this by forming an appropriate augmented matrix 𝐴, calling
cla_utils.exercises3.householder() and extracting appropriate subarrays using slice notation, before us-
ing cla_utils.exercises3.solve_U() to solve the resulting upper triangular system, before returning the
solution 𝑥. The test script test_exercises3.py in the test directory will also test this function.

� Hint

You will need to do extract the appropriate submatrix to obtain the square (and invertible) reduced matrix �̂�.

3.7. Application: Least squares problems 31



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

32 Chapter 3. QR factorisation



CHAPTER

FOUR

ANALYSING ALGORITHMS

In the previous section we saw three algorithms to compute the QR factorisation of a matrix. They have a beautiful
mathematical structure based on orthogonal projectors. But are they useful? To answer this we need to know:

1. Is one faster than others?

2. Is one more sensitive than others to small perturbations due to early truncation of the algorithm or due to
round-off errors?

In this course we will characterise answers to the first question by operation count (acknowledging that this is an
incomplete evaluation of speed), and answers to the second question by analysing stability.

In this section we will discuss both of these questions by introducing some general concepts but also looking at the
examples of the QR algorithms that we have seen so far.

4.1 Operation count
Supplementary video

https://player.vimeo.com/video/450203625

Operation count is one aspect of evaluating how long algorithms take. Here we just note that this is not the only
aspect, since transferring data between different levels of memory on chips can be a serious (and often dominant)
consideration, even more so when we consider algorithms that make use of large numbers of processors running
in parallel. However, operation count is what we shall focus on here.

In this course, a floating point operation (FLOP) will be any arithmetic unary or binary operation acting on single
numbers (such as +, −, ×, ÷, √). Of course, in reality, these different operations have different relative costs,
and codes can be made more efficient by blending multiplications and additions (fused multiply-adds) for example.
Here we shall simply apologise to computer scientists in the class, and proceed with this interpretation, since we
are just making relative comparisons between schemes. We shall also concentrate on asymptotic results in the limit
of large 𝑛 and/or 𝑚.

4.2 Operation count for modified Gram-Schmidt
We shall discuss operation counts through the example of the modified Gram-Schmidt algorithm. We shall find
that the operation count is ∼ 2𝑚𝑛2 to compute the QR factorisation, where the ∼ symbol means

lim
𝑚,𝑛→∞

𝑁FLOPS
2𝑚𝑛2

= 1.

To get this result, we return to the pseudocode for the modified Gram-Schmidt algorithm, and concentrate on the
operations that are happening inside the inner 𝑗 loop. Inside that loop there are two operations,

1. 𝑟𝑖𝑗 ← 𝑞*𝑖 𝑣𝑖. This is the inner product of two vectors in R𝑚, which requires 𝑚 multiplications and 𝑚 − 1
additions, so we count 2𝑚− 1 FLOPS per inner iteration.

33

https://player.vimeo.com/video/450203625


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

2. 𝑣𝑗 ← 𝑣𝑗 − 𝑟𝑖𝑗𝑞𝑖. This requires 𝑚 multiplications and 𝑚 subtractions, so we count 2𝑚 FLOPS per inner
iteration.

At each iteration we require a combined operation count of ∼ 4𝑚 FLOPS. There are 𝑛 outer iterations over 𝑖, and
𝑛− 𝑖− 1 inner iterations over 𝑗, which we can estimate by approximating the sum as an integral,

𝑁FLOPS ∼
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=𝑖+1

4𝑚 ∼ 4𝑚

∫︁ 𝑛

0

∫︁ 𝑛

𝑥

𝑑𝑥′ 𝑑𝑥 = 4𝑚
𝑛2

2
= 2𝑚𝑛2,

as suggested above.

4.3 Operation count for Householder
In the Householder algorithm, the computation is dominated by the transformation

𝐴𝑘:𝑚,𝑘:𝑛 ← 𝐴𝑘:𝑚,𝑘:𝑛 − 2𝑣𝑘 (𝑣
*
𝑘𝐴𝑘:𝑚,𝑘:𝑛)⏟  ⏞  

1⏟  ⏞  
2

,

which must be done for each 𝑘 iteration. To evaluate the part marked 1 requires 𝑛− 𝑘 inner products of vectors in
C𝑚−𝑘, at a total cost of ∼ 2(𝑛 − 𝑘)(𝑚 − 𝑘) (we already examined inner products in the previous example). To
evaluate the part marked 2 then requires the outer product of two vectors in C𝑚−𝑘 and C𝑛−𝑘 respectively, at a total
cost of (𝑚− 𝑘)(𝑛− 𝑘) FLOPs. Finally two (𝑚− 𝑘)× (𝑛− 𝑘) matrices are substracted, at cost (𝑚− 𝑘)(𝑛− 𝑘).
Putting all this together gives ∼ 4(𝑛− 𝑘)(𝑚− 𝑘) FLOPs per 𝑘 iteration.

Now we have to sum this over 𝑘, so the total operation count is

4

𝑛∑︁
𝑘=1

(𝑛− 𝑘)(𝑚− 𝑘) = 4

𝑛∑︁
𝑘=1

(𝑛𝑚− 𝑘(𝑛+𝑚) + 𝑘2)

∼ 4𝑛2𝑚− 4(𝑛+𝑚)
𝑛2

2
+ 4

𝑛3

3
= 2𝑚𝑛2 − 2𝑛3

3
.

Exercise 56 Compute FLOP counts for the following operations.

1. 𝛼 = 𝑥*𝑦 for 𝑥, 𝑦 ∈ C𝑚.

2. 𝑦 = 𝑦 + 𝑎𝑥 for 𝑥, 𝑦 ∈ C𝑚, 𝑎 ∈ C.

3. 𝑦 = 𝑦 +𝐴𝑥 for 𝑥 ∈ C𝑛, 𝑦 ∈ C𝑚, 𝐴 ∈ C𝑚×𝑛.

4. 𝐶 = 𝐶 +𝐴𝐵 for 𝐴 ∈ C𝑚×𝑟, 𝐵 ∈ C𝑟×𝑛, 𝐶 ∈ C𝑚×𝑛.

Exercise 57 Suppose 𝐷 = 𝐴𝐵𝐶 where 𝐴 ∈ C𝑚×𝑛, 𝐵 ∈ C𝑛×𝑝, 𝐶 ∈ C𝑝×𝑞 . This can either be computed as
𝐷 = (𝐴𝐵)𝐶 (multiply 𝐴 and 𝐵 first, then 𝐶), or 𝐷 = 𝐴(𝐵𝐶) (multiply 𝐵 and 𝐶 first, then 𝐴). Compute the
FLOP count for both approaches. For which values of 𝑚,𝑛, 𝑝, 𝑞 would the first approach be more efficient?

Exercise 58 Suppose 𝑊 ∈ C𝑛×𝑛 is defined by

𝑤𝑖𝑗 =

𝑛∑︁
𝑞=1

𝑛∑︁
𝑝=1

𝑥𝑖𝑝𝑦𝑝𝑞𝑧𝑞𝑗 ,

where 𝑋,𝑌, 𝑍 ∈ C𝑛×𝑛. What is the FLOP count for computing the entries of 𝑊?

The equivalent formula

𝑤𝑖𝑗 =

𝑛∑︁
𝑝=1

𝑥𝑖𝑝

(︃
𝑛∑︁

𝑞=1

𝑦𝑝𝑞𝑧𝑞𝑗

)︃
,

34 Chapter 4. Analysing algorithms



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

computes the bracket contents first for all 𝑝, 𝑗, before doing the sum over 𝑝. What is the FLOP count for this
alternative method of computing the entries of 𝑊?

Using what you have learned, propose an 𝒪(𝑛3) procedure for computing 𝐴 ∈ C𝑛×𝑛 with entries

𝑎𝑖𝑗 =

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝑛∑︁
𝑚=1

𝐸𝑘𝑖𝐹𝑘𝑖𝐺𝑙𝑘𝐻𝑙𝑚𝐹𝑙𝑚𝐺𝑚𝑗 .

Exercise 59 Let 𝐿1, 𝐿2 ∈ C𝑚×𝑚 be lower triangular matrices. If we apply the usual formula for multiplying
matrices, we will waste computation time by multiplying numbers by zero and then adding the result to other
numbers. Describe a more efficient algorithm as pseudo-code and compute the FLOP count, comparing with the
FLOP count for the standard algorithm.

4.4 Matrix norms for discussing stability
Supplementary video

https://player.vimeo.com/video/450204495

In the rest of this section we will discuss another important aspect of analysing computational linear algebra algo-
rithms, stability. To do this we need to introduce some norms for matrices in addition to the norms for vectors that
we discussed in Section 1.

If we ignore their multiplication properties, matrices in C𝑚×𝑛 can be added and scalar multiplied, hence we can
view them as a vector space, in which we can define norms, just as we did for vectors.

One type of norm arises from simply treating the matrix entries as entries of a vector and evaluating the 2-norm.

Definition 60 (Frobenius norm) The Frobenius norm is the matrix version of the 2-norm, defined as

‖𝐴‖𝐹 =

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴2
𝑖𝑗 .

(Exercise: show that ‖𝐴𝐵‖𝐹 ≤ ‖𝐴‖𝐹 ‖𝐵‖𝐹 .)

Another type of norm measures the maximum amount of stretching the matrix can cause when multiplying a vector.

Definition 61 (Induced matrix norm) Given an 𝑚×𝑛 matrix 𝐴 and any chosen vector norms ‖·‖(𝑛) and ‖·‖(𝑚)

on C𝑛 and C𝑚, respectively, the induced norm on 𝐴 is

‖𝐴‖(𝑚,𝑛) = sup
𝑥∈C𝑛,𝑥 ̸=0

‖𝐴𝑥‖(𝑚)

‖𝑥‖(𝑛)
.

Directly from the definition we can show

‖𝐴𝑥‖(𝑚)

‖𝑥‖(𝑛)
≤ sup

𝑥∈C𝑛,𝑥 ̸=0

‖𝐴𝑥‖(𝑚)

‖𝑥‖(𝑛)
= ‖𝐴‖(𝑚,𝑛),

and hence ‖𝐴𝑥‖ ≤ ‖𝐴‖‖𝑥‖ whenever we use an induced matrix norm.

Exercise 62 We can reformulate the induced definition as a constrained optimisation problem

‖𝐴‖(𝑚,𝑛) =
√︂

sup
𝑥∈C𝑛,‖𝑥‖2=1

‖𝐴𝑥‖2(𝑚).

Introduce a Lagrange multiplier 𝜆 ∈ C to enforce the constraint ‖𝑥‖2 = 1. Consider the case above where the
norms on C𝑚 and C𝑛 are both 2-norms. Show that 𝜆 must be an eigenvalue of some matrix (which you should
compute). Hence, given those eigenvalues, provide an expression for the operator norm of 𝐴.

4.4. Matrix norms for discussing stability 35

https://player.vimeo.com/video/450204495


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

4.5 Norm inequalities
Often it is difficult to find exact values for norms, so we compute upper bounds using inequalities instead. Here
are a few useful inequalities.

Definition 63 (Hölder inequality) Let 𝑥, 𝑦 ∈ C𝑚, and 𝑝, 𝑞 ∈ R+ such that 1
𝑝 + 1

𝑞 = 1. Then

|𝑥*𝑦| ≤ ‖𝑥‖𝑝‖𝑦‖𝑞.

In the case 𝑝 = 𝑞 = 2 this becomes the Cauchy-Schwartz inequality.

Definition 64 (Cauchy-Schwartz inequality) Let 𝑥, 𝑦 ∈ C𝑚. Then

|𝑥*𝑦| ≤ ‖𝑥‖2‖𝑦‖2.

For example, we can use this to bound the operator norm of the outer product 𝐴 = 𝑢𝑣* of two vectors.

‖𝐴𝑥‖2 = ‖𝑢𝑣*𝑥‖2 = ‖𝑢(𝑣*𝑥)‖2 = |𝑣*𝑥|‖𝑢‖2 ≤ ‖𝑢‖2‖𝑣‖2‖𝑥‖2,

so ‖𝐴‖2 ≤ ‖𝑢‖2‖𝑣‖2.

We can also compute bounds for ‖𝐴𝐵‖2.

Theorem 65 Let 𝐴 ∈ C𝑙×𝑚, 𝐵 ∈ C𝑚×𝑛. Then

‖𝐴𝐵|(𝑙,𝑛) ≤ ‖𝐴‖(𝑙,𝑚)‖𝐵‖(𝑚,𝑛).

Proof 66

‖𝐴𝐵𝑥‖(𝑙) ≤ ‖𝐴‖(𝑙,𝑚)‖𝐵𝑥‖(𝑚) ≤ ‖𝐴‖(𝑙,𝑚)‖𝐵‖(𝑚,𝑛)‖𝑥‖(𝑛),

so

‖𝐴𝐵‖(𝑙,𝑛) = sup
𝑥 ̸=0

‖𝐴𝐵𝑥‖(𝑙)
‖𝑥‖(𝑛)

≤ ‖𝐴‖(𝑙,𝑚)‖𝐵‖(𝑚,𝑛),

as required.

4.6 Condition number
Supplementary video

https://player.vimeo.com/video/450205296

The key tool to understanding numerical stability of computational linear algebra algorithms is the condition num-
ber. The condition number is a very general concept that measures the behaviour of a mathematical problem
under perturbations. Here we think of a mathematical problem as a function 𝑓 : 𝑋 → 𝑌 , where 𝑋 and 𝑌 are
normed vector spaces (further generalisations are possible). It is often the case that 𝑓 has different properties under
perturbation for different values of 𝑥 ∈ 𝑋 .

Definition 67 (Well conditioned and ill conditioned.) We say that a problem is well conditioned (at 𝑥) if small
changes in 𝑥 lead to small changes in 𝑓(𝑥). We say that a problem is ill conditioned if small changes in 𝑥 lead to
large changes in 𝑓(𝑥).

36 Chapter 4. Analysing algorithms

https://player.vimeo.com/video/450205296


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

These changes are measured by the condition number.

Definition 68 (Absolute condition number.) Let 𝛿𝑥 be a perturbation so that 𝑥 ↦→ 𝑥 + 𝛿𝑥. The corresponding
change in 𝑓(𝑥) is 𝛿𝑓(𝑥),

𝛿𝑓(𝑥) = 𝑓(𝑥+ 𝛿𝑥)− 𝑓(𝑥).

The absolute condition number of 𝑓 at 𝑥 is

�̂� = sup
𝛿𝑥 ̸=0

‖𝛿𝑓‖
‖𝛿𝑥‖

,

i.e. the maximum that 𝑓 can change relative to the size of the perturbation 𝛿𝑥.

It is easier to consider linearised perturbations, defining a Jacobian matrix 𝐽(𝑥) such that

𝐽(𝑥)𝛿𝑥 = lim
𝜖→0

𝑓(𝑥+ 𝜖𝛿𝑥)− 𝑓(𝑥)

𝜖

and then the linear absolute condition number is

�̂� = sup
𝛿𝑥 ̸=0

‖𝐽(𝑥)𝛿𝑥‖
‖𝛿𝑥‖

= ‖𝐽(𝑥)‖,

which is the operator norm of 𝐽(𝑥).

This definition could be improved by measuring this change relative to the size of 𝑓 itself.

Definition 69 (Relative condition number.) The relative condition number of a problem 𝑓 measures the changes
𝛿𝑥 and 𝛿𝑓 relative to the sizes of 𝑥 and 𝑓 .

𝜅 = sup
𝛿 ̸=0

‖𝛿𝑓‖/‖𝑓‖
‖𝛿𝑥‖/‖𝑥‖

.

The linear relative condition number is

𝜅 =
‖𝐽‖/‖𝑓‖
1/‖𝑥‖

=
‖𝐽‖‖𝑥‖
‖𝑓‖

.

Since we use floating point numbers on computers, it makes more sense to consider relative condition numbers in
computational linear algebra, and from here on we will always use them whenever we mention condition numbers.
If 𝜅 is small (1− 100, say) then we say that a problem is well conditioned. If 𝜅 is large (> 106, say), then we say
that a problem is ill conditioned.

Supplementary video

https://player.vimeo.com/video/450211558

As a first example, consider the problem of finding the square root, 𝑓 : 𝑥 ↦→
√
𝑥, a one dimensional problem. In

this case, 𝐽 = 𝑥−1/2/2. The (linear) condition number is

𝜅 =
|𝑥−1/2/2||𝑥|
|𝑥1/2|

= 1/2.

Hence, the problem is well-conditioned.

As a second example, consider the problem of finding the roots of a polynomial, given its coefficients. Specifically,
we consider the polynomial 𝑥2 − 2𝑥 + 1 = (𝑥 − 1)2, which has two roots equal to 1. Here we consider the
change in roots relative to the coefficient of 𝑥0 (which is 1). Making a small perturbation to the polynomial,
𝑥2 − 2𝑥 + 0.9999 = (𝑥 − 0.99)(𝑥 − 1.01), so a relative change of 10−4 gives a relative change of 10−2 in the
roots. Using the general formula

𝑟 = 1±
√
1− 𝑐 = 1±

√
𝛿𝑐 =⇒ 𝛿𝑟 = ±

√
𝛿𝑐,

4.6. Condition number 37

https://player.vimeo.com/video/450211558


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

where 𝑟 returns the two roots with perturbations 𝛿𝑟 and 𝑐 is the coefficient of 𝑥0 with perturbatino 𝛿𝑐. is the
perturbation to the coefficient of 𝑥0 (so 1 becomes 1 + 𝛿𝑐). The (nonlinear) condition number is then the sup over
𝛿𝑐 ̸= 0 of

|𝛿𝑟|/|𝑟|
|𝛿𝑐|/|𝑐|

=
|𝛿𝑟|
|𝛿𝑐|

=
|𝛿𝑐|1/2

|𝛿𝑐|
= |𝛿𝑐|−1/2 →∞ as 𝛿𝑐→ 0,

so the condition number is unbounded and the problem is catastrophically ill conditioned. For an even more vivid
example, see the conditioning of the roots of the Wilkinson polynomial.

4.7 Conditioning of linear algebra computations
Supplementary video

https://player.vimeo.com/video/450211706

We now look at the condition number of problems from linear algebra. The first problem we examine is the problem
of matrix-vector multiplication, i.e. for a fixed matrix 𝐴 ∈ C𝑚×𝑛, the problem is to find 𝐴𝑥 given 𝑥. The problem
is linear, with 𝐽 = 𝐴, so the condition number is

𝜅 =
‖𝐴‖‖𝑥‖
‖𝐴𝑥‖

.

When 𝐴 is non singular, we can write 𝑥 = 𝐴−1𝐴𝑥, and

‖𝑥‖ = ‖𝐴−1𝐴𝑥‖ ≤ ‖𝐴−1‖‖𝐴𝑥‖,

so

𝜅 ≤ ‖𝐴‖‖𝐴
−1‖‖𝐴𝑥‖
‖𝐴𝑥‖

= ‖𝐴‖‖𝐴−1‖.

We call this upper bound the condition number 𝜅(𝐴) of the matrix 𝐴.

Supplementary video

https://player.vimeo.com/video/450212408

The next problem we consider is the condition number of solving𝐴𝑥 = 𝑏, with 𝑏 fixed but considering perturbations
to𝐴. So, we have 𝑓 : 𝐴 ↦→ 𝑥. The condition number of this problem measures how small changes 𝛿𝐴 to𝐴 translate
to changes 𝛿𝑥 to 𝑥. The perturbed problem is

(𝐴+ 𝛿𝐴)(𝑥+ 𝛿𝑥) = 𝑏,

which simplifies (using 𝐴𝑥 = 𝑏) to

𝛿𝐴(𝑥+ 𝛿𝑥) +𝐴𝛿𝑥 = 0,

which is independent of 𝑏. If we are considering the linear condition number, we can drop the nonlinear term, and
we get

38 Chapter 4. Analysing algorithms

https://player.vimeo.com/video/450211706
https://player.vimeo.com/video/450212408


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

𝛿𝐴𝑥+𝐴𝛿𝑥 = 0, =⇒ 𝛿𝑥 = −𝐴−1𝛿𝐴𝑥,

from which we may compute the bound

‖𝛿𝑥‖ ≤ ‖𝐴−1‖‖𝛿𝐴‖‖𝑥‖.

Then, we can compute the condition number

𝜅 = sup
‖𝛿𝐴‖̸=0

‖𝛿𝑥‖/‖𝑥‖
‖𝛿𝐴‖/‖𝐴‖

. ≤ sup
‖𝛿𝐴‖̸=0

‖𝐴−1‖‖𝛿𝐴‖‖𝑥‖/‖𝑥‖
‖𝛿𝐴‖/‖𝐴‖

. = ‖𝐴−1‖‖𝐴‖ = 𝜅(𝐴),

having used the bound for 𝛿𝑥. Hence the bound on the condition number for this problem is the condition number
of 𝐴.

4.8 Floating point numbers and arithmetic
Supplementary video

https://player.vimeo.com/video/450212648

Floating point number systems on computers use a discrete and finite representation of the real numbers. One of
the first things we can deduce from this fact is that there exists a largest and a smallest positive number. In “double
precision”, the standard floating point number format for scientific computing these days, the largest number is
𝑁max ≈ 1.79× 10308, and the smallest number is 𝑁min ≈ 2.23× 10−308. The second thing that we can deduce
is that there must be gaps between adjacent numbers in the number system. In the double precision format, the
interval [1, 2] is subdivided as (1, 1+2−52, 1+2×2−52, 1+3×2−52, . . . , 2). The next interval [2, 4] is subdivided
as (2, 2 + 2−51, 2 + 2 × 2−51, . . . , 4). In general, the interval [2𝑗 , 2𝑗+1] is subdivided by multiplying the set
subdividing [1, 2] by 2𝑗 . In this representation, the gaps between numbers scale with the number size. We call this
set of numbers the (double precision) floating point numbers F ⊂ R.

A key aspect of a floating point number system is “machine epsilon” (𝜀), which measures the largest relative
distance between two numbers. Considering the description above, we see that 𝜀 is the the distance between 1 and
the adjacent number, i.e.

𝜀 = 2−53 ≈ 1.11× 10−16.

𝜀 defines the accuracy with which arbitrary real numbers (within the range of the maximum magnitude above) can
be approximated in F.

∀𝑥 ∈ R, ∃𝑥′ ∈ F such that |𝑥− 𝑥′| ≤ 𝜀|𝑥|.

Supplementary video

https://player.vimeo.com/video/450213018

Definition 70 (Floating point rounding function) We define 𝑓𝐿 : R → F as the function that rounds 𝑥 ∈ R to
the nearest floating point number.

The following axiom is just a formal presentation of the properties of floating point numbers that we discussed
below.

4.8. Floating point numbers and arithmetic 39

https://player.vimeo.com/video/450212648
https://player.vimeo.com/video/450213018


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Definition 71 (Floating point axiom I)

∀𝑥 ∈ R, ∃𝜖′ with |𝜖′| ≤ 𝜀,

such that 𝑓𝐿(𝑥) = 𝑥(1 + 𝜖′).

The arithmetic operations +,−,×,÷ on R have analogous operations ⊕,⊖,⊗, etc. In general, binary operators
⊙ (as a general symbol representing the floating point version of a real arithmetic operator · which could be any of
the above) are constructed such that

𝑥⊙ 𝑦 = 𝑓𝐿(𝑥 · 𝑦),

for 𝑥, 𝑦 ∈ F, with · being one of +,−,×,÷.

Definition 72 (Floating point axiom II)

∀𝑥, 𝑦 ∈ F,∃𝜖′ with |𝜖′| ≤ 𝜀, such that
𝑥⊙ 𝑦 = (𝑥 · 𝑦)(1 + 𝜖′).

Exercise 73 The formula for the roots of a quadratic equation 𝑥2 − 2𝑝𝑥− 𝑞 = 0 is well-known,

𝑥 = 𝑝±
√︀

𝑝2 + 𝑞.

Show that the smallest root (with the minus sign above) also satisfies

𝑥 = − 𝑞

𝑝+
√︀
𝑝2 + 𝑞

.

In the case 𝑝 = 12345678 and 𝑞 = 1, compare the result of these two methods for computing the smallest root
when using double floating point arithmetic (the default floating point numbers in Python/NumPy). Which is more
accurate? Why is this?

4.9 Stability
Supplementary video

https://player.vimeo.com/video/450213263

Stability describes the perturbation behaviour of a numerical algorithm when used to solve a problem on a computer.
Now we have two problems 𝑓 : 𝑋 → 𝑌 (the original problem implemented in the real numbers), and 𝑓 : 𝑋 → 𝑌
(the modified problem where floating point numbers are used at each step).

Given a problem 𝑓 (such as computing the QR factorisation), we are given:

1. A floating point system F,

2. An algorithm for computing 𝑓 ,

3. A floating point implementation 𝑓 for 𝑓 .

Then the chosen 𝑥 ∈ 𝑋 is rounded to 𝑥′ = 𝑓𝐿(𝑥), and supplied to the floating point implementation of the
algorithm to obtain 𝑓(𝑥) ∈ 𝑌 .

Now we want to compare 𝑓(𝑥) with 𝑓(𝑥). We can measure the absolute error

‖𝑓(𝑥)− 𝑓(𝑥)‖,

or the relative error (taking into account the size of 𝑓 ),

40 Chapter 4. Analysing algorithms

https://player.vimeo.com/video/450213263


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

‖𝑓(𝑥)− 𝑓(𝑥)‖
‖𝑓(𝑥)‖

.

An aspiration (but an unrealistic one) would be to aim for an algorithm to accurate to machine precision, i.e.

‖𝑓(𝑥)− 𝑓(𝑥)‖
‖𝑓(𝑥)‖

= 𝒪(𝜀),

by which we mean that ∃𝐶 > 0 such that

‖𝑓(𝑥)− 𝑓(𝑥)‖
‖𝑓(𝑥)‖

≤ 𝐶𝜀,

for sufficiently small 𝜀 (assuming, albeit unrealistically, that we have a sequence of computers with smaller and
smaller 𝜀). We shall see below that we have to lower our aspirations depending on the condition number of 𝐴.

Definition 74 (Stability) An algorithm 𝑓 for 𝑓 is stable if for each 𝑥 ∈ 𝑋 , there exists �̃� with

‖𝑓(𝑥)− 𝑓(�̃�)‖
‖𝑓(�̃�)‖

= 𝒪(𝜀),

𝑎𝑛𝑑

‖�̃�− 𝑥‖
‖𝑥‖

= 𝒪(𝜀).

We say that a stable algorithm gives nearly the right answer to nearly the right question.

Supplementary video

https://player.vimeo.com/video/450213664

Supplementary video

https://player.vimeo.com/video/454094432

Definition 75 (Backward stability) An algorithm 𝑓 for 𝑓 is backward stable if for each 𝑥 ∈ 𝑋 , ∃�̃� such that

𝑓(𝑥) = 𝑓(�̃�), with
‖�̃�− 𝑥‖
‖𝑥‖

= 𝒪(𝜀).

A backward stable algorithm gives exactly the right answer to nearly the right question. The following result shows
what accuracy we can expect from a backward stable algorithm, which involves the condition number of 𝑓 .

Theorem 76 (Accuracy of a backward stable algorithm) Suppose that a backward stable algorithm is applied
to solve problem 𝑓 : 𝑋 → 𝑌 with condition number 𝜅 using a floating point number system satisfying the floating
point axioms I and II. Then the relative error satisfies

‖𝑓(𝑥)− 𝑓(𝑥)‖
‖𝑓(𝑥)‖

= 𝒪(𝜅(𝑥)𝜖).

Proof 77 Since 𝑓 is backward stable, we have �̃� with 𝑓(𝑥) = 𝑓(�̃�) and ‖�̃�− 𝑥‖/‖𝑥‖ = 𝒪(𝜀) as above. Then,

4.9. Stability 41

https://player.vimeo.com/video/450213664
https://player.vimeo.com/video/454094432


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

‖𝑓(𝑥)− 𝑓(𝑥)‖
‖𝑓(𝑥)‖

=
‖𝑓(�̃�)− 𝑓(𝑥)‖
‖𝑓(𝑥)‖

,

=
‖𝑓(�̃�)− 𝑓(𝑥)‖
‖𝑓(𝑥)‖

‖𝑥‖
‖�̃�− 𝑥‖⏟  ⏞  

=𝜅

‖�̃�− 𝑥‖
‖𝑥‖⏟  ⏞  
=𝒪(𝜖)

,

as required.

This type of calculation is known as backward error analysis, originally introduced by Jim Wilkinson to analyse
the accuracy of eigenvalue calculations using the PILOT ACE, one of the early computers build at the National
Physical Laboratory in the late 1940s and early 1950s. In backward error analysis we investigate the accuracy via
conditioning and stability. This is usually much easier than forward analysis, where one would simply try to keep
a running tally of errors committed during each step of the algorithm.

4.10 Backward stability of the Householder algorithm
Supplementary video

https://player.vimeo.com/video/450214127

We now consider the example of the problem of finding the QR factorisation of a matrix 𝐴, implemented in
floating point arithmetic using the Householder method. The input is 𝐴, and the exact output is 𝑄,𝑅, whilst the
floating point algorithm output is �̃�, �̃�. Here, we consider �̃� as the exact unitary matrix produced by composing
Householder rotations made by the floating point vectors 𝑣𝑘 that approximate the 𝑣𝑘 vectors in the exact arithmetic
Householder algorithm.

For this problem, backwards stability means that there exists a perturbed input 𝐴+ 𝛿𝐴, with ‖𝛿𝐴‖/‖𝐴‖ = 𝒪(𝜀),
such that �̃�, �̃� are exact solutions to the problem, i.e. �̃��̃� = 𝐴+𝛿𝐴. This means that there is very small backward
error,

‖𝐴− �̃��̃�‖
‖𝐴‖

= 𝒪(𝜀).

It turns out that the Householder method is backwards stable.

Theorem 78 Let the QR factorisation be computed for 𝐴 using a floating point implementation of the Householder
algorithm. This factorisation is backwards stable, i.e. the result �̃��̃� satisfy

�̃��̃� = 𝐴+ 𝛿𝐴,
‖𝛿𝐴‖
‖𝐴‖

= 𝒪(𝜀).

Proof 79 See the textbook by Trefethen and Bau, Lecture 16.

Exercise 80 Use your Householder implementation to generate random 𝑄1 and 𝑅1 matrices of dimension 𝑚. It
is very important that the two matrices 𝑄1 and 𝑅1 are uncorrelated. In particular, computing them as the QR
factorisation of the same matrix would spoil the experiment). So what you need to do is to randomly generate two
independent 𝑚×𝑚 matrices 𝐴1 and 𝐴2. Then 𝑄1 should come from the QR factorisation of 𝐴1, and 𝑅2 should
come from the QR factorisation of 𝐴2.

Print out the value of ‖𝑄2 − 𝑄1‖, ‖𝑅2 − 𝑅1‖, ‖𝐴 − 𝑄2𝑅2‖. Explain what you see using what you know about
the stability of the Householder algorithm.

4.11 Backward stability for solving a linear system using QR
Supplementary video

42 Chapter 4. Analysing algorithms

https://player.vimeo.com/video/450214127


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

https://player.vimeo.com/video/450214601

The QR factorisation provides a method for solving systems of equations 𝐴𝑥 = 𝑏 for 𝑥 given 𝑏, where 𝐴 is an
invertible matrix. Substituting 𝐴 = 𝑄𝑅 and then left-multiplying by 𝑄* gives

𝑅𝑥 = 𝑄*𝑏 = 𝑦.

The solution of this equation is 𝑥 = 𝑅−1𝑦, but if there is one message to take home from this course, it is that
you should never form the inverse of a matrix. It is especially disasterous to use Kramer’s rule, which the 𝑚
dimensional extension of the formula for the inverse of 2 × 2 matrices that you learned at school. Kramer’s rule
has an operation count scaling like 𝒪(𝑚!) and is numerically unstable. Hence it is so disasterous that we won’t
even show the formula for Kramer’s rule here.

There are some better algorithms for finding the inverse of a matrix if you really need it, but in almost every situation
it is better to solve a matrix system rather than forming the inverse of the matrix and multiplying it. As we have
already seen, it is particularly easy to solve an equation formed from an upper triangular matrix. We recall the
backward substitution algorithm below.

• 𝑥𝑚 ← 𝑦𝑚/𝑅𝑚𝑚

• FOR 𝑖 = 𝑚− 1 TO 1 (BACKWARDS)

– 𝑥𝑖 ← (𝑦𝑖 −
∑︀𝑚

𝑘=𝑖+1 𝑅𝑖𝑘𝑥𝑘)/𝑅𝑖𝑖

In each iteration, there are 𝑚− 𝑖− 1 multiplications and subtractions plus a division, so the total operation count
is ∼ 𝑚2 FLOPs.

In comparison, the least bad way to form the inverse 𝑍 of 𝑅 is to write 𝑅𝑍 = 𝐼 . Then, the 𝑘-th column of this
equation is

𝑅𝑧𝑘 = 𝑒𝑘,

where 𝑧𝑘 is the kth column of 𝑍. Solving for each column independently using back substitution leads to an
operation count of ∼ 𝑚3 FLOPs, much slower than applying back substitution directly to 𝑏. Hopefully this should
convince you to always seek an alternative to forming the inverse of a matrix.

There are then three steps to solving 𝐴𝑥 = 𝑏 using QR factorisation.

1. Find the QR factorisation of 𝐴 (here we shall use the Householder algorithm).

2. Set 𝑦 = 𝑄*𝑏 (using the implicit multiplication algorithm).

3. Solve 𝑅𝑥 = 𝑦 (using back substitution).

So our 𝑓 here is the solution of 𝐴𝑥 = 𝑏 given 𝑏 and 𝐴, and our 𝑓 is the composition of the three algorithms above.
Now we ask: “Is this composition of algorithms stable?”

We already know that the Householder algorithm is stable, and a floating point implementation produces �̃�, �̃�
such that �̃��̃� = 𝐴 + 𝛿𝐴 with ‖𝛿𝐴‖/‖𝐴‖ = 𝒪(𝜀). It turns out that the implicit multiplication algorithm is also
backwards stable, for similar reasons (as it is applying the same Householder reflections). This means that given �̃�
(we have already perturbed 𝑄 when forming it using Householder) and 𝑏, the floating point implementation gives
𝑦 which is not exactly equal to �̃�*𝑏, but instead satisfies

𝑦 = (�̃�+ 𝛿𝑄)*𝑏 =⇒ (�̃�+ 𝛿𝑄)𝑦 = 𝑏,

for some perturbation 𝛿𝑄 with ‖𝛿𝑄‖ = 𝒪(𝜀) (note that ‖𝑄‖ = 1 because it is unitary). Note that here, we are
treating 𝑏 as fixed and considering the backwards stability under perturbations to �̃�.

Finally, it can be shown (see Lecture 17 of Trefethen and Bau for a proof) that the backward substitution algorithm
is backward stable. This means that given 𝑦 and �̃�, the floating point implementation of backward substitution
produces �̃� such that

4.11. Backward stability for solving a linear system using QR 43

https://player.vimeo.com/video/450214601


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

(�̃�+ 𝛿�̃�)�̃� = 𝑦,

for some upper triangular perturbation such that ‖𝛿�̃�‖/‖�̃�‖ = 𝒪(𝜀).

Using the individual backward stability of these three algorithms, we show the following result.

Theorem 81 The QR algorithm to solve 𝐴𝑥 = 𝑏 is backward stable, producing a solution �̃� such that

(𝐴+∆𝐴)�̃� = 𝑏,

for some ‖∆𝐴‖/‖𝐴‖ = 𝒪(𝜀).

Proof 82 From backward stability for the calculation of 𝑄*𝑏, we have

𝑏 = (�̃�+ 𝛿𝑄)𝑦,

= (�̃�+ 𝛿𝑄)(�̃�+ 𝛿𝑅)�̃�,

having substituted the backward stability formula for back substitution in the second line. Multiplying out the
brackets and using backward stability for the Householder method gives

𝑏 = (�̃��̃�+ (𝛿𝑄)�̃�+ �̃�𝛿𝑅+ (𝛿𝑄)𝛿𝑅)�̃�,

= (𝐴+ 𝛿𝐴+ (𝛿𝑄)�̃�+ �̃�𝛿𝑅+ (𝛿𝑄)𝛿𝑅⏟  ⏞  
=Δ𝐴

�̃�).

This defines∆𝐴 and it remains to estimate each of these terms. We immediately have ‖𝛿𝐴‖ = 𝒪(𝜀) from backward
stability of the Householder method.

Next we estimate the second term. Using 𝐴+ 𝛿𝐴 = �̃��̃�, we have

�̃� = �̃�*(𝐴+ 𝛿𝐴),

we have

‖�̃�‖
‖𝐴‖

≤ ‖�̃�*‖‖𝐴+ 𝛿𝐴‖
‖𝐴‖

= 𝒪(1), as 𝜀→ 0.

Then we have

‖(𝛿𝑄)�̃�‖
‖𝐴‖

≤ ‖𝛿𝑄‖‖�̃�‖
‖𝐴‖

= 𝒪(𝜀).

To estimate the third term, we have

‖�̃�𝛿𝑅‖
‖𝐴‖

≤ ‖𝛿𝑅‖
‖𝐴‖

‖�̃�‖⏟ ⏞ 
=1

=
‖𝛿𝑅‖
‖�̃�‖⏟  ⏞  
𝒪(𝜀)

‖�̃�‖
‖𝐴‖⏟ ⏞ 
𝒪(1)

= 𝒪(𝜀).

44 Chapter 4. Analysing algorithms



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Finally, the fourth term has size

‖𝛿𝑄𝛿𝑅‖
‖𝐴‖

≤ ‖𝛿𝑄‖⏟  ⏞  
𝒪(𝜀)

‖𝛿𝑅‖
‖�̃�‖⏟  ⏞  
𝒪(𝜀)

‖�̃�‖
‖𝐴‖⏟ ⏞ 
𝒪(1)

= 𝒪(𝜖2),

hence ‖∆𝐴‖/‖𝐴‖ = 𝒪(𝜀).

Supplementary video

https://player.vimeo.com/video/450215261

Corollary 83 When solving𝐴𝑥 = 𝑏 using the QR factorisation procedure above, the floating point implementation
produces an approximate solution �̃� with

‖�̃�− 𝑥‖
‖𝑥‖

= 𝒪(𝜅(𝐴)𝜀).

Proof 84 From Theorem 76, using the backward stability that we just derived, we know that

‖�̃�− 𝑥‖
‖𝑥‖

= 𝒪(𝜅𝜀),

where 𝜅 is the condition number of the problem of solving 𝐴𝑥 = 𝑏, which we have shown is bounded from above
by 𝜅(𝐴).

4.11. Backward stability for solving a linear system using QR 45

https://player.vimeo.com/video/450215261


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

46 Chapter 4. Analysing algorithms



CHAPTER

FIVE

FINDING EIGENVALUES OF MATRICES

Supplementary video

https://player.vimeo.com/video/454117340

We start with some preliminary terminology. A vector 𝑥 ∈ C𝑚 is an eigenvector of a square matrix 𝐴 ∈ C𝑚×𝑚

with eigenvalue 𝜆 if 𝐴𝑥 = 𝜆𝑥. An eigenspace is the subspace 𝐸𝜆 ⊂ C𝑚 containing all eigenvectors of 𝐴 with
eigenvalue 𝜆.

There are a few reasons why we are interested in computing eigenvectors and eigenvalues of a matrix 𝐴.

1. Eigenvalues and eigenvectors encode information about 𝐴.

2. Eigenvalues play an important role in stability calculations in physics and engineering.

3. We can use eigenvectors to underpin the solution of linear systems involving 𝐴.

4. . . .

5.1 How to find eigenvalues?
The method that we first encounter in our mathematical education is to find solutions of (𝐴 − 𝜆𝐼)𝑥 = 0, which
implies that det(𝐴−𝜆𝐼) = 0. This gives a degree𝑚 polynomial to solve for𝜆, called the characteristic polynomial.
Unfortunately, there is no general solution for polynomials of degree 5 or greater (from Galois theory). Further,
the problem of finding roots of polynomials is numerically unstable. All of this means that we should avoid using
polynomials finding eigenvalues. Instead, we should try to apply transformations to the matrix 𝐴 to a form that
means that the eigenvalues can be directly extracted.

Example 85 Consider the 𝑚×𝑚 diagonal matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 . . . . . . 0
0 2 . . . . . . 0

0 0
. . . . . .

...
...

... . . .
. . .

...
0 0 . . . . . . 𝑚

⎞⎟⎟⎟⎟⎟⎟⎠ .

The characteristic polynomial of 𝐴 is

(𝜆− 1)(𝜆− 2) . . . (𝜆−𝑚),

and the eigenvalues are clearly 1, 2, 3, . . . ,𝑚. This is called the Wilkinson Polynomial. Numpy has some tools
for manipulating polynomials which are useful here. When an 𝑚 × 𝑚 array is passed in to numpy.poly(), it
returns an array of coefficients of the polynomial. For 𝑚 = 20, obtain this array and then perturb the coefficients
𝑎𝑘 → �̃�𝑘 = 𝑎𝑘(1 + 10−10𝑟𝑘) where 𝑟𝑘 are randomly sampled normally distributed numbers with mean 0 and
variance 1. numpy.roots() will compute the roots of this perturbed polynomial. Plot these roots as points in the

47

https://player.vimeo.com/video/454117340
https://numpy.org/doc/stable/reference/generated/numpy.poly.html#numpy.poly
https://numpy.org/doc/stable/reference/generated/numpy.roots.html#numpy.roots


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

complex plane. Repeat this 100 times, superposing the root plots on the same graph. What do you observe? What
does it tell you about this problem and what should we conclude about the wisdom of finding eigenvalues using
characteristic polynomials?

Supplementary video

https://player.vimeo.com/video/454118485

The eigenvalue decomposition of a matrix 𝐴 finds a nonsingular matrix 𝑋 and a diagonal matrix Λ such that

𝐴 = 𝑋Λ𝑋−1.

The diagonal entries of Λ are the eigenvalues of 𝐴. Hence, if we could find the eigenvalue decomposition of 𝐴, we
could just read off the eigenvalues of 𝐴; the eigenvalue decomposition is “eigenvalue revealing”. Unfortunately, it
is not always easy or even possible to transform to an eigenvalue decomposition. Hence we shall look into some
other eigenvalue revealing decompositions of 𝐴.

We quote the following result that explains when an eigenvalue decomposition can be found.

Theorem 86 An 𝑚×𝑚 matrix 𝐴 has an eigenvalue decomposition if and only if it is non-defective, meaning that
the geometric multiplicity of each eigenvalue (the dimension of the eigenspace for that eigenvalue) is equal to the
algebraic multiplicity (the number of times that the eigenvalue is repeated as a root in the characteristic polynomial
det(𝐼𝜆−𝐴) = 0.

If the algebraic multiplicity is greater than the geometric multiplicity for any eigenvalue of 𝐴, then the matrix is
defective, the eigenvectors do not span C𝑚, and an eigenvalue decomposition is not possible.

This all motivates the search for other eigenvalue revealing decompositions of 𝐴.

Supplementary video

https://player.vimeo.com/video/454122744

Definition 87 (Similarity transformations) For 𝑋 ∈ C𝑚×𝑚 a nonsingular matrix, the map 𝐴 ↦→ 𝑋−1𝐴𝑋 is
called a similarity transformation of 𝐴. Two matrices 𝐴 and 𝐵 are similar if 𝐵 = 𝑋−1𝐴𝑋 .

The eigenvalue decomposition shows that (when it exists), 𝐴 is similar to Λ. The following result shows that it may
be useful to examine other similarity transformations.

Theorem 88 Two similar matrices 𝐴 and 𝐵 have the same characteristic polynomial, eigenvalues, and geometric
multiplicities.

Proof 89 See a linear algebra textbook.

The goal is to find a similarity transformation such that 𝐴 is transformed to a matrix 𝐵 that has some simpler
structure where the eigenvalues can be easily computed (with the diagonal matrix of the eigenvalue decomposition
being one example).

One such transformation comes from the Schur factorisation.

Supplementary video

https://player.vimeo.com/video/454122918

Definition 90 (Schur factorisation) A Schur factorisation of a square matrix𝐴 takes the form𝐴 = 𝑄𝑇𝑄*, where
𝑄 is unitary (and hence 𝑄* = 𝑄−1) and 𝑇 is upper triangular.

It turns out that, unlike the situation for the eigenvalue decomposition, the following is true.

Theorem 91 Every square matrix has a Schur factorisation.

This is useful, because the characteristic polynomial of an upper triangular matrix is just
∏︀𝑚

𝑖=1(𝜆 − 𝑇𝑖𝑖), i.e. the
eigenvalues of 𝑇 are the diagonal entries (𝑇11, 𝑇22, . . . , 𝑇𝑚𝑚). So, if we can compute the Schur factorisation of
𝐴, we can just read the eigenvalues from the diagonal matrices of 𝐴.

There is a special case of the Schur factorisation, called the unitary diagonalisation

48 Chapter 5. Finding eigenvalues of matrices

https://player.vimeo.com/video/454118485
https://player.vimeo.com/video/454122744
https://player.vimeo.com/video/454122918


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Definition 92 (Unitary diagonalisation) A unitary diagonalisation of a square matrix 𝐴 takes the form 𝐴 =
𝑄Λ𝑄*, where 𝑄 is unitary (and hence 𝑄* = 𝑄−1) and Λ is diagonal.

A unitary diagonalisation is a Schur factorisation and an eigenvalue decomposition.

Theorem 93 A Hermitian matrix is unitarily diagonalisable, with real Λ.

Hence, if we have a Hermitian matrix, we can follow a Schur factorisation strategy (such as we shall develop in
this section), and obtain an eigenvalue decomposition as a bonus.

5.2 Transformations to Schur factorisation
Supplementary video

https://player.vimeo.com/video/454123177

Just as for the QR factorisations, we will compute the Schur factorisation successively, with multiplication by a
sequence of unitary matrices 𝑄1, 𝑄2, . . .. There are two differences for the Schur factorisation. First, the matrices
must be multiplied not just on the left but also on the right with the inverse, i.e.

𝐴 ↦→ 𝑄*
1𝐴𝑄1⏟  ⏞  
𝐴1

↦→ 𝑄*
2𝑄

*
1𝐴𝑄1𝑄2⏟  ⏞  
𝐴2

, . . .

At each stage, we have a similarity transformation,

𝐴 = 𝑄1𝑄2 . . . 𝑄𝑘⏟  ⏞  
=𝑄

𝐴𝑘 𝑄
*
𝑘 . . . 𝑄

*
2𝑄

*
1⏟  ⏞  

=𝑄*

,

i.e. 𝐴 is similar to 𝐴𝑘. Second, the successive sequence is infinite, i.e. we will develop an iterative method that
converges in the limit 𝑘 → ∞. We should terminate the iterative method when 𝐴𝑘 is sufficiently close to being
upper triangular (which can be measured by checking some norm on the lower triangular part of 𝐴 and stopping
when it is below a tolerance).

We should not be surprised by the news that the method needs to be iterative, since if the successive sequence were
finite, we would have derived an explicit formula for computing the eigenvalues of the characteristic polynomial
of 𝐴 which is explicit in general.

In fact, there are two stages to this process. The first stage, which is finite (takes 𝑚 − 1 steps) is to use similarity
transformations to upper Hessenberg form (𝐻𝑖𝑗 = 0 for 𝑖 > 𝑗 + 1). If 𝐴 is Hermitian, then 𝐻 will be tridiagonal.
This stage is not essential but it makes the second, iterative, stage much faster.

5.3 Similarity transformation to upper Hessenberg form
Supplementary video

https://player.vimeo.com/video/454123306

We already know how to use a unitary matrix to set all entries to zero below the diagonal in the first column of 𝐴
by left multiplication 𝑄*

1𝐴, because this is the Householder algorithm. The problem is that we then have to right
multiply by 𝑄1 to make it a similarity transformation, and this puts non-zero entries back in the column again. The
easiest way to see this is to write 𝑄*

1𝐴𝑄1 = (𝑄*
1(𝑄

*
1𝐴)*)*. (𝑄*

1𝐴)* has zeros in the first row to the right of the
first entry. Then, 𝑄*

1(𝑄
*
1𝐴) creates linear combinations of the first column with the other columns, filling the zeros

in with non-zero values again. Then finally taking the adjoint doesn’t help with these non-zero values. Again, we
shouldn’t be surprised that this is impossible, because if it was, then we would be able to build a finite procedure
for computing eigenvalues of the characteristic polynomial, which is impossible in general.

Exercise 94 The cla_utils.exercises8.Q1AQ1s() function has been left uncompleted. It should apply the
Householder transformation 𝑄1 to the input 𝐴 (without forming 𝑄1 of course) that transforms the first column

5.2. Transformations to Schur factorisation 49

https://player.vimeo.com/video/454123177
https://player.vimeo.com/video/454123306


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

of 𝐴 to have zeros below the diagonal, and then apply a transformation equivalent to right multiplication by 𝑄*
1

(again without forming 𝑄1). The test script test_exercises8.py in the test directory will test this function.

Experiment with the output of this function. What happens to the first column?

A slight modification of this idea (and the reason that we can transform to upper Hessenberg form) is to use a
Householder rotation 𝑄*

1 to set all entries to zero below the second entry in the first column. This matrix leaves the
first row unchanged, and hence right multiplication by 𝑄1 leaves the first column unchanged. We can create zeros
using 𝑄*

1 and 𝑄1 will not destroy them. This procedure is then repeated with multiplication by 𝑄*
2, which leaves

the first two rows unchanged and puts zeros below the third entry in the second column, which are not spoiled by
right multiplication by 𝑄2. Hence, we can transform 𝐴 to a similar upper Hessenberg matrix 𝐻 in 𝑚−2 iterations.

Supplementary video

https://player.vimeo.com/video/454123643

This reduction to Hessenberg form can be expressed in the following pseudo-code.

• FOR 𝑘 = 1 TO 𝑚− 2

– 𝑥← 𝐴𝑘+1:𝑚,𝑘

– 𝑣𝑘 ← sign(𝑥1)‖𝑥‖2𝑒1 + 𝑥

– 𝑣𝑘 ← 𝑣𝑘/‖𝑣‖2
– 𝐴𝑘+1:𝑚,𝑘:𝑚 ← 𝐴𝑘+1:𝑚,𝑘:𝑚 − 2𝑣𝑘(𝑣

*
𝑘𝐴𝑘+1:𝑚,𝑘:𝑚)

– 𝐴1:𝑚,𝑘+1:𝑚 ← 𝐴1:𝑚,𝑘+1:𝑚 − 2(𝐴1:𝑚,𝑘+1:𝑚𝑣𝑘)𝑣
*
𝑘

• END FOR

Note the similarities and differences with the Householder algorithm for computing the QR factorisation.

Exercise 95 (‡) The cla_utils.exercises8.hessenberg() function has been left unimplemented. It should
implement the algorithm above, using only one loop over 𝑘. It should work “in-place”, changing the input matrix.
At the left multiplication, your implementation should exploit the fact that zeros do not need to be recomputed
where there are already expected to be zeros. The test script test_exercises8.py in the test directory will test
this function.

To calculate the operation count, we see that the algorithm is dominated by the two updates to 𝐴, the first of which
applies a Householder reflection to rows from the left, and the second applies the same reflections to columns from
the right.

The left multiplication applies a Householder reflection to the last 𝑚 − 𝑘 rows, requiring 4 FLOPs per entry.
However, these rows are zero in the first 𝑘 − 1 columns, so we can skip these and just work on the last 𝑚− 𝑘 + 1
entries of each of these rows.

Then, the total operation count for the left multiplication is

4×
𝑚−1∑︁
𝑘=1

(𝑚− 𝑘)(𝑚− 𝑘 + 1) ∼ 4

3
𝑚3.

The right multiplication does the same operations but now there are no zeros to take advantage of, so all 𝑚 entries
in the each of the last 𝑚− 𝑘 columns need to be manipulated. With 4 FLOPs per entry, this becomes

4×
𝑚−1∑︁
𝑘=1

𝑚(𝑚− 𝑘) ∼ 10

3
𝑚3𝐹𝐿𝑂𝑃𝑠.

Supplementary video

https://player.vimeo.com/video/454123926

50 Chapter 5. Finding eigenvalues of matrices

https://player.vimeo.com/video/454123643
https://player.vimeo.com/video/454123926


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

In the Hermitian case, the Hessenberg matrix becomes tridiagonal, and these extra zeros can be exploited, leading
to an operation count ∼ 4𝑚3/3.

It can be shown that this transformation to a Hessenberg matrix is backwards stable, i.e. in a floating point imple-
mentation, it gives �̃�, �̃� such that

�̃��̃��̃�* = 𝐴+ 𝛿𝐴,
‖𝛿𝐴‖
‖𝐴‖

= 𝒪(𝜀),

for some 𝛿𝐴.

Exercise 96 The cla_utils.exercises8.hessenbergQ() function has been left unimplemented. It should
implement the Hessenberg algorithm again (you can just copy paste the code from the previous exercise) but it
should also return the matrix 𝑄 such that 𝑄𝐻𝑄* = 𝐴. You need to work out how to alter the algorithm to
construct this. The test script test_exercises8.py in the test directory will test this function.

Exercise 97 The cla_utils.exercises8.ev() function has been left unimplemented. It should return the
eigenvectors of 𝐴 by first reducing to Hessenberg form, using the functions you have already created, and then
calling cla_utils.exercises8.hessenberg_ev(), which computes the eigenvectors of upper Hessenberg ma-
trices (do not edit this function!). The test script test_exercises8.py in the test directory will test this function.

Supplementary video

https://player.vimeo.com/video/454124279

In the next few sections we develop the iterative part of the transformation to the upper triangular matrix 𝑇 . This
algorithm works for a broad class of matrices, but the explanation is much easier for the case of real symmetric
matrices, which have real eigenvalues and orthogonals eigenvectors (which we shall normalise to ‖𝑞𝑖‖ = 1, 𝑖 =
1, 2, . . . ,𝑚). The idea is that we will have already transformed to Hessenberg form, which will be tridiagonal in
this case. Before describing the iterative transformation, we will discuss a few key tools in explaining how it works.

5.4 Rayleigh quotient
The first tool that we shall consider is the Rayleigh quotient. If 𝐴 ∈ C𝑚×𝑚 is a real symmetric matrix, then the
Rayleigh quotient of a vector 𝑥 ∈ C𝑚 is defined as

𝑟(𝑥) =
𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
.

If 𝑥 is an eigenvector of 𝐴, then

𝑟(𝑥) =
𝑥𝑇𝜆𝑥

𝑥𝑇𝑥
= 𝜆,

i.e. the Rayleigh quotient gives the corresponding eigenvalue.

Supplementary video

https://player.vimeo.com/video/454124455

If 𝑥 is not exactly an eigenvector of 𝐴, but is just close to one, we might hope that 𝑟(𝑥) is close to being an
eigenvalue. To investigate this we will consider the Taylor series expansion of 𝑟(𝑥) about an eigenvector 𝑞𝐽 of 𝐴.
We have

∇𝑟(𝑥) = 2

𝑥𝑇𝑥
(𝐴𝑥− 𝑟(𝑥)𝑥) ,

5.4. Rayleigh quotient 51

https://player.vimeo.com/video/454124279
https://player.vimeo.com/video/454124455


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

which is zero when 𝑥 = 𝑞𝐽 , because then 𝑟(𝑞𝐽) = 𝜆𝐽 : eigenvectors of 𝐴 are stationary points of 𝑟(𝑥)! Hence, the
Taylor series has vanishing first order term,

𝑟(𝑥) = 𝑟(𝑞𝐽) + (𝑥− 𝑞𝐽)
𝑇 ∇𝑟(𝑞𝐽)⏟  ⏞  

=0

+𝒪(‖𝑥− 𝑞𝐽‖2),

i.e.

𝑟(𝑥)− 𝑟(𝑞𝐽) = 𝒪(‖𝑥− 𝑞𝐽‖2), as 𝑥→ 𝑞𝐽 .

The Rayleigh quotient gives a quadratically accurate estimate to the eigenvalues of 𝐴.

Exercise 98 Add a function to cla_utils.exercises8 that investigates this property by:

1. Forming a Hermitian matrix 𝐴,

2. Finding an eigenvector 𝑣 of 𝐴 with eigenvalue 𝜆 (you can use numpy.linalg.eig() for this),

3. Choosing a perturbation vector 𝑟, and perturbation parameter 𝜖 > 0,

4. Comparing the Rayleigh quotient of 𝑣 + 𝜖𝑟 with 𝜆,

5. Plotting (on a log-log graph, use matplotlib.pyplot.loglog()) the error in estimating the eigenvalue
as a function of 𝜖.

The best way to do this is to plot the computed data values as points, and then superpose a line plot of 𝑎𝜖𝑘 for
appropriate value of 𝑘 and 𝑎 chosen so that the line appears not to far away from the points on the same scale.
This means that we can check by eye if the error is scaling with 𝜖 at the expected rate.

5.5 Power iteration
Supplementary video

https://player.vimeo.com/video/454124701

Power iteration is a simple method for finding the largest eigenvalue of𝐴 (in magnitude). It is based on the following
idea. We expand a vector 𝑣 in eigenvectors of 𝐴,

𝑣 = 𝑎1𝑞1 + 𝑎2𝑞2 + . . . 𝑎𝑚𝑞𝑚,

where we have ordered the eigenvalues so that |𝜆1| ≥ |𝜆2| ≥ |𝜆3| ≥ . . . ≥ |𝜆𝑚.

Then,

𝐴𝑣 = 𝑎1𝜆1𝑞1 + 𝑎2𝜆2𝑞2 + . . . 𝑎𝑚𝜆𝑚𝑞𝑚,

and hence, repeated applications of 𝐴 gives

𝐴𝑘𝑣 = 𝐴𝐴 . . . 𝐴⏟  ⏞  
𝑘 times

𝑣

= 𝑎1𝜆
𝑘
1𝑞1 + 𝑎2𝜆

𝑘
2𝑞2 + . . . 𝑎𝑚𝜆𝑘

𝑚𝑞𝑚.

52 Chapter 5. Finding eigenvalues of matrices

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html#numpy.linalg.eig
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.loglog.html#matplotlib.pyplot.loglog
https://player.vimeo.com/video/454124701


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

If |𝜆1| > |𝜆2|, then provided that 𝑎1 = 𝑞𝑇1 𝑣 ̸= 0, the first term 𝑎1𝜆
𝑘
1𝑞1 rapidly becomes larger than all of the others,

and so 𝐴𝑘𝑣 ≈ 𝑎1𝜆
𝑘
1𝑞1, and we can normalise to get 𝑞1 ≈ 𝐴𝑘𝑣/‖𝐴𝑘𝑣‖. To keep the magnitude of the estimate from

getting too large or small (depending on the size of 𝜆1 relative to 1), we can alternately apply 𝐴 and normalise,
which gives the power iteration. Along the way, we can use the Rayleigh quotient to see how our approximation of
the eigenvalue is going.

• Set 𝑣0 to some initial vector (hoping that ‖𝑞𝑇1 𝑣0‖ > 0).

• FOR 𝑘 = 1, 2, . . .

– 𝑤 ← 𝐴𝑣𝑘−1,

– 𝑣𝑘 ← 𝑤/‖𝑤‖,

– 𝜆(𝑘) ← (𝑣𝑘)𝑇𝐴𝑣𝑘.

Here we have used the fact that ‖𝑣𝑘‖ = 1, so there is no need to divide by it in the Rayleigh quotient. We terminate
the power iteration when we decide that the changes in 𝜆 indicate that the error is small. This is guided by the
following result.

Theorem 99 If |𝜆1| > |𝜆2| and ‖𝑞𝑇1 𝑣0‖ > 0, then after 𝑘 iterations of power iteration, we have

‖𝑣𝑘 −±𝑞1‖ = 𝒪

(︃⃒⃒⃒⃒
𝜆2

𝜆1

⃒⃒⃒⃒𝑘)︃
, |𝜆(𝑘) − 𝜆1| = 𝒪

(︃⃒⃒⃒⃒
𝜆2

𝜆1

⃒⃒⃒⃒2𝑘)︃
,

as 𝑘 →∞. At each step ± we mean that the result holds for either + or −.

Proof 100 We have already shown the first equation using the Taylor series, and the second equation comes by
combining the Taylor series error with the Rayleigh quotient error.

The± feature is a bit annoying, and relates to the fact that the normalisation does not select 𝑣𝑘 to have the direction
as 𝑞1.

Exercise 101 The cla_utils.exercises9.pow_it() function has been left unimplemented. It should apply
power iteration to a given matrix and initial vector, according to the docstring. The test script test_exercises9.
py in the test directory will test this function.

Exercise 102 The functions cla_utils.exercises9.A3() and cla_utils.exercises9.B3() each return a
3x3 matrix, 𝐴3 and 𝐵3 respectively. Apply cla_utils.exercises9.pow_it() to each of these functions. What
differences in behaviour do you observe? What is it about 𝐴3 and 𝐵3 that causes this?

5.6 Inverse iteration
Supplementary video

https://player.vimeo.com/video/454124799

Inverse iteration is a modification of power iteration so that we can find eigenvalues other than 𝜆1. To do this, we
use the fact that eigenvectors 𝑞𝑗 of 𝐴 are also eigenvectors of (𝐴 − 𝜇𝐼)−1 for any 𝜇 ∈ R not an eigenvalue of 𝐴
(otherwise 𝐴− 𝜇𝐼 is singular). To show this, we write

(𝐴− 𝜇𝐼)𝑞𝑗 = (𝜆𝑗 − 𝜇)𝑞𝑗 =⇒ (𝐴− 𝜇𝐼)−1𝑞𝑗 =
1

𝜆𝑗 − 𝜇
𝑞𝑗 .

Thus 𝑞𝑗 is an eigenvalue of (𝐴−𝜇𝐼)−1 with eigenvalue 1/(𝜆𝑗−𝜇). We can then apply power iteration to (𝐴−𝜇𝐼)−1

(which requires a matrix solve per iteration), which converges to an eigenvector 𝑞 for which 1/|𝜆− 𝜇| is smallest,
where 𝜆 is the corresponding eigenvalue. In other words, we will find the eigenvector of 𝐴 whose eigenvalue is
closest to 𝜇.

This algorithm is called inverse iteration, which we express in pseudo-code below.

• 𝑣0 ← some initial vector with ‖𝑣0‖ = 1.

5.6. Inverse iteration 53

https://player.vimeo.com/video/454124799


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

• FOR 𝑘 = 1, 2, . . .

– SOLVE (𝐴− 𝜇𝐼)𝑤 = 𝑣𝑘−1 for 𝑤

– 𝑣𝑘 ← 𝑤/‖𝑤‖

– 𝜆(𝑘) ← (𝑣𝑘)𝑇𝐴𝑣𝑘

We can then directly extend Theorem {number} to the inverse iteration algorithm. We conclude that the conver-
gence rate is not improved relative to power iteration, but now we can “dial in” to different eigenvalues by choosing
𝜇.

Exercise 103 The cla_utils.exercises9.inverse_it() function has been left unimplemented. It should
apply inverse iteration to a given matrix and initial vector, according to the docstring. The test script
test_exercises9.py in the test directory will test this function.

Exercise 104 Using the 𝐴3 and 𝐵3 matrices, explore the inverse iteration using different values of 𝜇. What do
you observe?

5.7 Rayleigh quotient iteration
Supplementary video

https://player.vimeo.com/video/454303115

Since we can use the Rayleigh quotient to find an approximation of an eigenvalue, and we can use an approximation
of an eigenvalue to find the nearest eigenvalue using inverse iteration, we can combine them together. The idea is
to start with a vector, compute the Rayleigh quotient, use the Rayleigh quotient for 𝜇, then do one step of inverse
iteration to give an updated vector which should now be closer to an eigenvector. Then we iterate this whole
process. This is called the Rayleigh quotient iteration, which we express in pseudo-code below.

• 𝑣0 some initial vector with ‖𝑣0‖ = 1.

• 𝜆(0) ← (𝑣0)𝑇𝐴𝑣0

• FOR 𝑘 = 1, 2, . . .

– SOLVE (𝐴− 𝜆(𝑘−1)𝐼)𝑤 = 𝑣𝑘−1 for 𝑤

– 𝑣𝑘 ← 𝑤/‖𝑤‖

– 𝜆(𝑘) ← (𝑣𝑘)𝑇𝐴𝑣𝑘

This dramatically improves the convergence since if ‖𝑣𝑘−𝑞𝐽‖ = 𝒪(𝛿) for some small 𝛿, then the Rayleigh quotient
gives |𝜆(𝑘) − 𝑞𝐽 | = 𝒪(𝛿2). Then, inverse iteration gives an estimate

‖𝑣𝑘+1 −±𝑞𝐽‖ = 𝒪(|𝜆(𝑘) − 𝜆𝐽 |‖𝑣𝑘 − 𝑞𝐽‖) = 𝒪(𝛿3).

Thus we have cubic convergence, which is super fast!

Exercise 105 The cla_utils.exercises9.rq_it() function has been left unimplemented. It should apply
inverse iteration to a given matrix and initial vector, according to the docstring. The test script test_exercises9.
py in the test directory will test this function.

Exercise 106 The interfaces to cla_utils.exercises9.inverse_it() and cla_utils.exercises9.
rq_it() have been designed to optionally provide the iterated values of the eigenvector and eigenvalue. For
a given initial condition (and choice of 𝜇 in the case of inverse iteration), compare the convergence speeds of the
eigenvectors and eigenvalues, using some example matrices of different sizes (don’t forget to make them Hermitian).

5.8 The pure QR algorithm
Supplementary video

https://player.vimeo.com/video/454124953

54 Chapter 5. Finding eigenvalues of matrices

https://player.vimeo.com/video/454303115
https://player.vimeo.com/video/454124953


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

We now describe the QR algorithm, which will turn out to be an iterative algorithm that converges to the diagonal
matrix (upper triangular matrix for the general nonsymmetric case) that 𝐴 is similar to. Why this works is not at
all obvious at first, and we shall explain this later. For now, here is the algorithm written as pseudo-code.

• 𝐴(0) ← 𝐴

• FOR 𝑘 = 1, 2, . . .

– FIND 𝑄(𝑘), 𝑅(𝑘) such that 𝑄(𝑘)𝑅(𝑘) = 𝐴(𝑘−1) (USING QR FACTORISATION)

– 𝐴(𝑘) = 𝑅(𝑘)𝑄(𝑘)

Exercise 107 (‡) The cla_utils.exercises9.pure_QR() function has been left unimplemented. It should im-
plement the pure QR algorithm as above, using your previous code for finding the QR factorisation using House-
holder transformations. You should think about avoiding unecessary allocation of new numpy arrays inside the
loop. The method of testing for convergence has been left as well. Have a think about how to do this and document
your implementation. The test script test_exercises9.py in the test directory will test this function.

Exercise 108 Investigate the behaviour of the pure QR algorithm applied to the functions provided by cla_utils.
exercises9.get_A100(), cla_utils.exercises9.get_B100(), cla_utils.exercises9.get_C100(),
and cla_utils.exercises9.get_D100(). You can use matplotlib.pyplot.pcolor() to visualise the en-
tries, or compute norms of the components of the matrices below the diagonal, for example. What do you observe?
How does this relate to the structure of the four matrices?

� Hint

Some of this examples will require a complex valued QR factorisation. This just requires a minor modification
of your Householder QR code. If you have complex entries, then you should replace sign(𝑥1) with −𝑒𝑖 arg(𝑥1)

which is the numerically stable choice in the complex case.

The algorithm simply finds the QR factorisation of𝐴, swaps Q and R, and repeats. We call this algorithm the “pure”
QR algorithm, since it can be accelerated with some modifications that comprise the “practical” QR algorithm that
is used in practice.

We can at least see that this is computing similarity transformations since

𝐴(𝑘) = 𝑅(𝑘)𝑄(𝑘) = (𝑄(𝑘))*𝑄(𝑘)𝑅(𝑘)𝑄(𝑘) = (𝑄(𝑘))*𝐴(𝑘−1)𝑄(𝑘),

so that 𝐴(𝑘) is similar to 𝐴(𝑘−1) and hence to 𝐴(𝑘−2) and all the way back to 𝐴. But why does 𝐴(𝑘) converge to
a diagonal matrix? To see this, we have to show that the QR algorithm is equivalent to another algorithm called
simultaneous iteration.

5.9 Simultaneous iteration
Supplementary video

https://player.vimeo.com/video/454125180

One problem with power iteration is that it only finds one eigenvector/eigenvalue pair at a time. Simultaneous
iteration is a solution to this. The starting idea is simple: instead of working on just one vector 𝑣, we pick a set of
linearly independent vectors 𝑣01 , 𝑣02 , . . . , 𝑣0𝑛 and repeatedly apply 𝐴 to each of these vectors. After a large number
applications and normalisations in the manner of the power iteration, we end up with a linear independent set
𝑣𝑘1 , 𝑣

𝑘
2 , . . . , 𝑣

𝑘
𝑛, 𝑛 ≤ 𝑚. All of the vectors in this set will be very close to 𝑞1, the eigenvector with largest magnitude

of corresponding eigenvalue. We can choose 𝑣𝑘1 as our approximation of 𝑞1, and project this approximation of
𝑞1 from the rest of the vectors 𝑣𝑘2 , 𝑣𝑘3 , . . . 𝑣𝑘𝑛. All the remaining vectors will be close to 𝑞2, the eigenvector with
the next largest magnitude of corresponding eigenvalue. Similarly we can choose the first one of the remaining
projected vectors as an approximation of 𝑞2 and project it again from the rest.

5.9. Simultaneous iteration 55

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.pcolor.html#matplotlib.pyplot.pcolor
https://player.vimeo.com/video/454125180


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

We can translate this idea to matrices by defining 𝑉 (0) to be the matrix with columns given by the set of initial
𝑣 s. Then after 𝑘 applications of 𝐴, we have 𝑉 (𝑘) = 𝐴𝑘𝑉 (0). By the column space interpretation of matrix-
matrix multiplication, each column of 𝑉 (𝑘) is 𝐴𝑘 multiplied by the corresponding column of 𝑉 (0). To make
the normalisation and projection process above, we could just apply the Gram-Schmidt algorithm, sequentially
forming an orthonormal spanning set for the columns of 𝑉 (𝑘) working from left to right. However, we know that
an equivalent way to do this is to form the (reduced) QR factorisation of 𝑉 (𝑘), �̂�(𝑘)�̂�(𝑘) = 𝑉 (𝑘); the columns
of �̂�(𝑘) give the same orthonormal spanning set. Hence, the columns of �̂�(𝑘) will converge to eigenvectors of 𝐴,
provided that:

1. The first 𝑛 eigenvalues of 𝐴 are distinct in absolute value: |𝜆1| > |𝜆2| > . . . > |𝜆𝑛|. If we want to find all
of the eigenvalues 𝑛 = 𝑚, then all the absolute values of the eigenvalues must be distinct.

2. The 𝑣 vectors can be expressed as a linear sum of the first 𝑛 eigenvectors 𝑞1, . . . , 𝑞𝑛 in a non-degenerate way.
This turns out to be equivalent (we won’t show it here) to the condition that �̂�𝑇𝑉 (0) has an LU factorisation
(where �̂� is the matrix whose columns are the first 𝑛 eigenvectors of 𝐴).

One problem with this idea is that it is not numerically stable. The columns of 𝑉 (𝑘) rapidly become a very ill-
conditioned basis for the spanning space of the original independent set, and the values of eigenvectors will be
quickly engulfed in rounding errors. There is a simple solution to this though, which is to orthogonalise after each
application of 𝐴. This is the simultaneous iteration algorithm, which we express in the following pseudo-code.

• TAKE A UNITARY MATRIX �̂�(0)

• FOR 𝑘 = 1, 2, . . .

– 𝑍 ← 𝐴�̂�(𝑘−1)

– FIND 𝑄(𝑘), 𝑅(𝑘) such that 𝑄(𝑘)𝑅(𝑘) = 𝑍 (USING QR FACTORISATION)

This is mathematically equivalent to the process we described above, and so it converges under the same two
conditions listed above.

We can already see that this looks rather close to the QR algorithm. The following section confirms that they are
in fact equivalent.

5.10 The pure QR algorithm and simultaneous iteration are equiv-
alent

Supplementary video

https://player.vimeo.com/video/454125393

To be precise, we will show that the pure QR algorithm is equivalent to simultaneous iteration when the initial
independent set is the canonical basis 𝐼 , i.e. 𝑄(0) = 𝐼 . From the above, we see that that algorithm converges
provided that 𝑄𝑇 has an LU decomposition, where 𝑄 is the limiting unitary matrix that simultaneous iteration is
converging to. To show that the two algorithms are equivalent, we append them with some auxiliary variables,
which are not needed for the algorithms but are needed for the comparison.

To simultaneous iteration we append a running similarity transformation of 𝐴, and a running product of all of the
𝑅 matrices.

• 𝑄′(0) ← 𝐼

• FOR 𝑘 = 1, 2, . . .

– 𝑍 ← 𝐴𝑄′(𝑘−1)

– FIND 𝑄′(𝑘), 𝑅(𝑘) such that 𝑄′(𝑘)𝑅(𝑘) = 𝑍 (USING QR FACTORISATION)

– 𝐴(𝑘) = (𝑄′(𝑘))𝑇𝐴𝑄′(𝑘)

– 𝑅′(𝑘) = 𝑅(𝑘)𝑅(𝑘−1) . . . 𝑅(1)

To the pure QR factorisation we append a running product of the 𝑄𝑘 matrices, and a running product of all of the
𝑅 matrices (again).

56 Chapter 5. Finding eigenvalues of matrices

https://player.vimeo.com/video/454125393


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

• 𝐴(0) ← 𝐴

• FOR 𝑘 = 1, 2, . . .

– FIND 𝑄(𝑘), 𝑅(𝑘) such that 𝑄(𝑘)𝑅(𝑘) = 𝐴(𝑘−1) (USING QR FACTORISATION)

– 𝐴(𝑘) = 𝑅(𝑘)𝑄(𝑘)

– 𝑄′(𝑘) = 𝑄(1)𝑄(2) . . . 𝑄(𝑘)

– 𝑅′(𝑘) = 𝑅(𝑘)𝑅(𝑘−1) . . . 𝑅(1)

Theorem 109 (pure QR and simultaneous iteration with 𝐼 are equivalent) The two processes above generate
identical sequences of matrices 𝑅′(𝑘), 𝑄′(𝑘) and 𝐴(𝑘), which are related by 𝐴𝑘 = 𝑄′(𝑘)𝑅′(𝑘) (the 𝑘-th power of
𝐴, not 𝐴(𝑘)!), and 𝐴(𝑘) = (𝑄′(𝑘))𝑇𝐴𝑄′(𝑘).

Proof 110 We prove by induction. At 𝑘 = 0, 𝐴𝑘 = 𝑅′(𝑘) = 𝑄′(𝑘) = 𝐼 . Now we assume that the inductive
hypothesis is true for 𝑘, and aim to deduce that it is true for 𝑘 + 1.

For simultaneous iteration, we immediately have the simularity formula for 𝐴(𝑘) by definition, and we just need to
verify the QR factorisation of 𝐴𝑘. From the inductive hypothesis,

𝐴𝑘 = 𝐴𝐴𝑘−1 = 𝐴𝑄′(𝑘−1)
𝑅′(𝑘−1)

= 𝑍𝑅′(𝑘−1)
= 𝑄′(𝑘) 𝑅(𝑘)𝑅′(𝑘−1)⏟  ⏞  

=𝑅′(𝑘)

= 𝑄′(𝑘)𝑅′(𝑘),

as required (using the definition of 𝑍 and then the definition of 𝑅′(𝑘)).

For the QR algorithm, we again use the inductive hypothesis on the QR factorization of𝐴𝑘 followed by the inductive
hypothesis on the similarity transform to get

𝐴𝑘 = 𝐴𝐴𝑘−1 = 𝐴𝑄′(𝑘−1)
𝑅′(𝑘−1)

= 𝑄′(𝑘−1)
𝐴(𝑘−1)𝑅′(𝑘−1)

= 𝑄′(𝑘−1)
𝑄(𝑘)𝑅(𝑘)𝑅′(𝑘−1)

= 𝑄′(𝑘)𝑅′(𝑘),

where we used the algorithm definitions in the third equality and then the definitions of 𝑄′(𝑘) and 𝑅′(𝑘). To verify
the similarity transform at iteration 𝑘 we use the algorithm definitions to write

𝐴(𝑘) = 𝑅(𝑘)𝑄(𝑘) = (𝑄(𝑘))𝑇𝑄(𝑘)𝑅(𝑘)𝑄(𝑘) = (𝑄′(𝑘))𝑇𝐴(𝑄′)(𝑘),

as required.

This theorem tells us that the QR algorithm will converge under the conditions that simultaneous iteration con-
verges. It also tells us that the QR algorithm finds an orthonormal basis (the columns of 𝑄′(𝑘)) from the columns
of each power of 𝐴𝑘; this is how it relates to power iteration.

5.11 Connections between power iteration, inverse iteration, and
QR algorithm

There are some subtle connections between these algorithms that we can exploit to accelerate the convergence of
the QR algorithm. After 𝑘 iterations we have

𝐴𝑘 = 𝑄′(𝑘)𝑅′(𝑘),

from the above theorem. (Remember that 𝑄′(𝑘) and 𝑅′(𝑘), are different from 𝑄(𝑘) and 𝑅(𝑘).) In particular, the
first column of 𝑅′(𝑘) is 𝑒1𝑟

(𝑘)
11 (because 𝑅′(𝑘) is an upper triangular matrix), so the first column of 𝐴𝑘 is

𝐴𝑘𝑒1 = 𝑟
(𝑘)
11 𝑄′(𝑘)𝑒1.

5.11. Connections between power iteration, inverse iteration, and QR algorithm 57



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

In other words, the first column of 𝑄′(𝑘) is the result of 𝑘 iterations of power iteration starting at 𝑒1. (We already
knew this from the previous theorem, but here we are introducing ways to look at different components of 𝑄′(𝑘)

and 𝑅′(𝑘)). This means that it will converge to the eigenvector of 𝐴 with the eigenvalue of largest magnitude, and
the convergence rate will depend on the gap between the magnitude of that eigenvalue and the magnitude of the
next largest.

To look at connections with inverse iteration, we use the inverse formula,

𝐴−𝑘 =
(︁
𝑅′(𝑘)

)︁−1 (︁
𝑄′(𝑘)

)︁*
:= �̃�(𝑘)

(︁
𝑄′(𝑘)

)︁*
,

where �̃�(𝑘) =
(︁
𝑅′(𝑘)

)︁−1

is also upper triangular since invertible upper triangular matrices form a group.

Then,

(𝐴−𝑘)𝑇 = 𝑄′(𝑘)(�̃�(𝑘))𝑇 .

The last column of (�̃�(𝑘))𝑇 is 𝑟(𝑘)𝑛𝑛 𝑒𝑛, so the last column of (𝐴−𝑘)𝑇 is

(𝐴−𝑘)𝑇 𝑒𝑛 = 𝑄′(𝑘)𝑟𝑛𝑛𝑒𝑛,

i.e. the last column of 𝑄′(𝑘) corresponds to the 𝑘 th step of inverse iteration applied to 𝐴𝑇 . When 𝐴 is symmetric,
this is the same as inverse iteration applied to 𝑒𝑛.

5.12 The practical QR algorithm
Supplementary video

https://player.vimeo.com/video/454125822

The practical QR algorithm for real symmetric matrices has a number of extra elements that make it fast. First,
recall that we start by transforming to tridiagonal (symmetric Hessenberg) form. This cuts down the numerical
cost of the steps of the QR algorithm.

For the second element, the Rayleigh quotient algorithm idea is incorporated by applying shifts𝐴(𝑘)−𝜇(𝑘)𝐼 , where
𝜇(𝑘) is some eigenvalue estimate for the smallest eigenvalues. Relying on the fact that if 𝐴 is symmetric, then we
know that the last diagonal in 𝑅(𝑘) will be converging to the smallest eigenvalue of 𝐴 via inverse iteration. Then,
applying QR to the shifted matrix, the last diagonal will converge to the eigenvalue of 𝐴 closest to 𝜇(𝑘). This will
happen quickly if 𝜇(𝑘) is an accurate estimate of an eigenvalue of 𝐴.

For the third element, when an eigenvalue is found (i.e. an eigenvalue appears accurately on the diagonal of 𝐴(𝑘))
the off-diagonal components are very small, and the matrix decouples into a block diagonal matrix where the QR
algorithm can be independently applied to the blocks (which is cheaper than doing them all together). This final
idea is called deflation.

A sketch of the practical QR algorithm is as follows.

• 𝐴(0) ← TRIDIAGONAL MATRIX

• FOR 𝑘 = 1, 2, . . .

– PICK A SHIFT 𝜇(𝑘) (discussed below)

– 𝑄(𝑘)𝑅(𝑘) = 𝐴(𝑘−1) − 𝜇(𝑘)𝐼 (from QR factorisation)

– 𝐴(𝑘) = 𝑅(𝑘)𝑄(𝑘) + 𝜇(𝑘)𝐼

– IF 𝐴
(𝑘)
𝑗,𝑗+1 ≈ 0 FOR SOME 𝑗

∗ 𝐴𝑗,𝑗+1 ← 0

∗ 𝐴𝑗+1,𝑗 ← 0

∗ continue by applying the practical QR algorithm to the diagonal blocks 𝐴1 and 𝐴2 of

𝐴𝑘 =

(︂
𝐴1 0
0 𝐴2

)︂
58 Chapter 5. Finding eigenvalues of matrices

https://player.vimeo.com/video/454125822


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

One possible way to select the shift 𝜇(𝑘) is to calculate a Rayleigh quotient with 𝐴 using the last column 𝑞
(𝑘)
𝑚 of

𝑄′(𝑘), which then gives cubic convergence for this eigenvector and eigenvalue. In fact, this is just 𝐴𝑘
𝑚𝑚,

𝐴(𝑘)
𝑚𝑚 = 𝑒𝑇𝑚𝐴(𝑘)𝑒𝑚 = 𝑒𝑇𝑚(𝑄′(𝑘))𝑇𝐴𝑄′(𝑘)𝑒𝑚 = (𝑞(𝑘)𝑚 )𝑇𝐴𝑞𝑚 = 𝜇(𝑘).

This is very cheap, we just read off the bottom right-hand corner from 𝐴(𝑘)! This is called the Rayleigh quotient
shift.

It turns out that the Rayleigh quotient shift is not guaranteed to work in all cases, so there is an alternative approach
called the Wilkinson shift, but we won’t discuss that here.

5.12. The practical QR algorithm 59



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

60 Chapter 5. Finding eigenvalues of matrices



CHAPTER

SIX

ITERATIVE KRYLOV METHODS FOR 𝐴𝑥 = 𝑏

Supplementary video

https://player.vimeo.com/video/454126320

In the previous section we saw how iterative methods are necessary (but can also be fast) for eigenvalue problems
𝐴𝑥 = 𝜆𝑥. Iterative methods can also be useful for solving linear systems 𝐴𝑥 = 𝑏, generating a sequence of
vectors 𝑥𝑘 that converge to the solution. We shall examine Krylov subspace methods, where each iteration mainly
involves a matrix-vector multiplication. For dense matrices, matrix-vector multiplication costs 𝒪(𝑚2), but often
(e.g. numerical solution of PDEs, graph problems, etc.) 𝐴 is sparse (i.e. has zeros almost everywhere) and
the matrix-vector multiplication costs 𝒪(𝑚). The goal is then to find a method where only a few iterations are
necessary before the error is very small, so that the solver has total cost 𝒪(𝑚𝑁) where 𝑁 is the total number of
iterations, hopefully small.

Since we only need the result of a matrix-vector multiplication, it is even possible to solve a linear system without
storing𝐴 explicitly. Instead one can just provide a subroutine that implements matrix-vector multiplication in some
way; this is called a “matrix-free” implementation.

6.1 Krylov subspace methods
Supplementary video

https://player.vimeo.com/video/454126582

In this section we will introduce Krylov subspace methods for solving 𝐴𝑥 = 𝑏 (we will not specialise to real or
symmetric matrices here). The idea is to approximate the solution using the basis

(𝑏, 𝐴𝑏,𝐴2𝑏, 𝐴3𝑏, . . . , 𝐴𝑘𝑏)

whose span is called a Krylov subspace. After each iteration the Krylov subspace grows by one dimension. As we
have already seen from studying power iteration, the later elements in this sequence will get very parallel (they will
all be approximating the eigenvector with largest magnitude of eigenvalue). Hence, we once again need to resort
to orthogonalising the basis. We could simply take the QR factorisation of this basis, but the Arnoldi iteration
coming up next also provides a neat way to solve the equation when projected onto the Krylov subspace.

6.2 Arnoldi iteration
The key to Krylov subspace methods turns out to be the transformation of 𝐴 to an upper Hessenberg matrix by or-
thogonal similarity transforms, so that 𝐴 = 𝑄𝐻𝑄*. We have already looked at using Householder transformations
to do this in the previous section. The Householder technique is not so suitable for large dimensional problems,
so instead we look at a way of proceeding column by column, just like the Gram-Schmidt method does for finding
𝑄𝑅 factorisations.

We do this by rewriting 𝐴𝑄 = 𝑄𝐻 . The idea is that at iteration 𝑛 we only look at the first 𝑛 columns of 𝑄, which
we call �̂�𝑛. When 𝑚 is large, this is a significant saving: 𝑚𝑛≪ 𝑚2. To execute the iteration, it turns out that we
should look at the (𝑛+ 1)× 𝑛 upper left-hand section of 𝐻 , i.e.

61

https://player.vimeo.com/video/454126320
https://player.vimeo.com/video/454126582


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

�̃�𝑛 =

⎛⎜⎜⎜⎜⎝
ℎ11 . . . ℎ1𝑛

ℎ21
. . .

...

0
. . . ℎ𝑛𝑛

0 0 ℎ𝑛+1,𝑛

⎞⎟⎟⎟⎟⎠
Then, 𝐴�̂�𝑛 = �̂�𝑛+1�̃�𝑛.

Supplementary video

https://player.vimeo.com/video/454127181

Using the column space interpretation of matrix-matrix multiplication, we see that the 𝑛-th column is

𝐴𝑞𝑛 = ℎ1𝑛𝑞1 + ℎ2𝑛𝑞2 + . . .+ ℎ𝑛,𝑛𝑞𝑛 + ℎ𝑛+1,𝑛𝑞𝑛+1.

This formula shows us how to construct the non-zero entries of the nth column of 𝐻; this defines the Arnoldi
algorithm which we provide as pseudo-code below.

• 𝑞1 ← 𝑏/‖𝑏‖

• FOR 𝑛 = 1, 2, . . .

– 𝑣 ← 𝐴𝑞𝑛

– FOR 𝑗 = 1 TO 𝑛

∗ ℎ𝑗𝑛 ← 𝑞*𝑗 𝑣

∗ 𝑣 ← 𝑣 − ℎ𝑗𝑛𝑞𝑗

– END FOR

– ℎ𝑛+1,𝑛 ← ‖𝑣‖

– 𝑞𝑛+1 ← 𝑣/‖𝑣‖

• END FOR

Exercise 111 (‡) The cla_utils.exercises10.arnoldi() function has been left unimplemented. It should
implement the Arnoldi algorithm using Numpy array operations where possible, and return the 𝑄 and 𝐻 matrices
after the requested number of iterations is complete. What is the minimal number of Python for loops possible?

The test script test_exercises10.py in the test directory will test this function.

If we were to form the (reduced) QR factorisation of the 𝑚× 𝑛 Krylov matrix

𝐾𝑛 =
(︀
𝑏 𝐴𝑏 . . . 𝐴𝑛1𝑏

)︀
then we would get 𝑄 = �̂�𝑛. Importantly, in the Arnoldi iteration, we never form 𝐾𝑛 or 𝑅𝑛 explicitly, since these
are very ill-conditioned and not useful numerically.

Supplementary video

https://player.vimeo.com/video/454136990

But what is the use of the �̃�𝑛 matrix? Applying �̂�*
𝑛 to 𝐴�̂�𝑛 = �̂�𝑛+1�̃�𝑛 gives

62 Chapter 6. Iterative Krylov methods for 𝐴𝑥 = 𝑏

https://player.vimeo.com/video/454127181
https://player.vimeo.com/video/454136990


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

�̂�*
𝑛𝐴�̂�𝑛 = �̂�*

𝑛�̂�𝑛+1�̃�𝑛,

=

⎛⎜⎜⎜⎜⎝
1 0 . . . 0 0

0
. . . . . .

...
...

...
. . . . . .

...
...

0 . . . . . . 1 0

⎞⎟⎟⎟⎟⎠ �̃�𝑛 = 𝐻𝑛,

where 𝐻𝑛 is the 𝑛× 𝑛 top left-hand corner of 𝐻 .

Supplementary video

https://player.vimeo.com/video/454171516

The intrepretation of this is that 𝐻𝑛 is the orthogonal projection of 𝐴 onto the Krylov subspace span(𝐾𝑛). To see
this, take any vector 𝑣, and project 𝐴𝑣 onto the the Krylov subspace span(𝐾𝑛).

𝑃𝐴𝑣 = �̂�𝑛�̂�
*
𝑛𝑣.

Then, changing basis to the orthogonal basis gives

�̂�*
𝑛(�̂�𝑛�̂�

*
𝑛𝐴)�̂�𝑛 = �̂�*

𝑛𝐴�̂�𝑛 = 𝐻𝑛.

6.3 GMRES
Supplementary video

https://player.vimeo.com/video/454171559

The Generalised Minimum Residual method (GMRES), due to Saad (1986), exploits these properties of the Arnoldi
iteration. The idea is that we build up the orthogonal basis for the Krylov subspaces one by one, and at each iteration
we solve the projection of 𝐴𝑥 = 𝑏 onto the Krylov basis as a least squares problem, until the residual ‖𝐴𝑥− 𝑏‖ is
below some desired tolerance.

To avoid the numerical instabilities that would come from using the basis (𝑏, 𝐴𝑏,𝐴2𝑏, . . .), we use the Arnoldi
iteration to build an orthonormal basis, and seek approximate solutions of the form 𝑥𝑛 = �̂�𝑛𝑦 for 𝑦 ∈ C𝑛. We
then seek the value of 𝑦 that minimises the residual

ℛ𝑛 = ‖𝐴�̂�𝑛𝑦 − 𝑏‖.

This explains the Minimum Residual part of the name. We also see from this definition that the residual cannot
increase with iterations, because it only increases the subspace where we seek a solution.

This problem can be simplified further by using 𝐴�̂�𝑛 = �̂�𝑛+1�̃�𝑛, so

ℛ𝑛 = ‖�̂�𝑛+1�̃�𝑛𝑦 − 𝑏‖.

Remembering that 𝑏 = ‖𝑏‖𝑞1, we see that the entire residual is in the column space of �̂�𝑛+1, and hence we can
invert on the column space using �̂�*

𝑛+1 which does not change the norm of the residual due to the orthonormality.

ℛ𝑛 = ‖�̃�𝑛𝑦 − �̂�*
𝑛+1𝑏‖ = ‖�̃�𝑛𝑦 − 𝑒1‖𝑏‖‖.

6.3. GMRES 63

https://player.vimeo.com/video/454171516
https://player.vimeo.com/video/454171559


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Finding 𝑦 to minimiseℛ𝑛 requires the solution of a least squares problem, which can be computed via QR factori-
sation as we saw much earlier in the course.

Supplementary video

https://player.vimeo.com/video/454171921

We are now in position to present the GMRES algorithm as pseudo-code.

• 𝑞1 ← 𝑏/‖𝑏‖

• FOR 𝑛 = 1, 2, . . .

– APPLY STEP 𝑛 OF ARNOLDI

– FIND 𝑦 TO MINIMIZE ‖�̃�𝑛𝑦 − ‖𝑏‖𝑒1‖

– 𝑥𝑛 ← �̂�𝑛𝑦

– CHECK IFℛ𝑛 < TOL

• END FOR

Exercise 112 (‡) The cla_utils.exercises10.GMRES() function has been left unimplemented. It should im-
plement the basic GMRES algorithm above, using one loop over the iteration count. You can paste code from your
cla_utils.exercises10.arnoldi() implementation, and you should use your least squares code to solve the
least squares problem. The test script test_exercises10.py in the test directory will test this function.

Exercise 113 The least squares problem in GMRES requires the QR factorisation of 𝐻𝑘. It is wasteful to rebuild
this from scratch given that we just computed the QR factorisation of 𝐻𝑘−1. Modify your code so that it recycles
the QR factorisation, applying just one extra Householder rotation per GMRES iteration. Don’t forget to check
that it still passes the test.

� Hint

Don’t get confused by the two Q matrices involved in GMRES! There is the Q matrix for the Arnoldi iteration,
and the Q matrix for the least squares problem. These are not the same.

6.4 Convergence of GMRES
Supplementary video

https://player.vimeo.com/video/454198706

The algorithm presented as pseudocode is the way to implement GMRES efficiently. However, we can make an
alternative formulation of GMRES using matrix polynomials.

We know that 𝑥𝑛 ∈ span(𝐾𝑛), so we can write

𝑥𝑛 = 𝑐0𝑏+ 𝑐1𝐴𝑏+ 𝑐2𝐴
2𝑏+ . . .+ 𝑐𝑛−1𝐴

𝑛−1𝑏 = 𝑝′(𝐴)𝑏,

where

𝑝′(𝑧) = 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧
2 + . . .+ . . . 𝑐𝑛−1𝑧

𝑛−1 =⇒ 𝑝′(𝐴) = 𝑐0𝐼 + 𝑐1𝐴+ 𝑐2𝐴
2 + . . .+ 𝑐𝑛−1𝐴

𝑛−1.

Here we have introduced the idea of a matrix polynomial, where the kth power of 𝑧 is replaced by the kth power
of 𝐴.

The residual becomes

64 Chapter 6. Iterative Krylov methods for 𝐴𝑥 = 𝑏

https://player.vimeo.com/video/454171921
https://player.vimeo.com/video/454198706


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

𝑟𝑛 = 𝑏−𝐴𝑥𝑛 = 𝑏−𝐴𝑝′(𝐴)𝑏 = (𝐼 −𝐴𝑝′(𝐴))𝑏 = 𝑝(𝐴)𝑏,

where 𝑝(𝑧) = 1− 𝑧𝑝′(𝑧). Thus, the residual is a matrix polynomial 𝑝 of 𝐴 applied to 𝑏, where 𝑝 ∈ 𝒫𝑛, and

𝒫𝑛 = {degree ≤ 𝑛 polynomials with 𝑝(0) = 1}.

Hence, we can recast iteration 𝑛 of GMRES as a polynomial optimisation problem: find 𝑝𝑛 ∈ 𝒫𝑛 such that
‖𝑝𝑛(𝐴)𝑏‖ is minimised. We have

‖𝑟𝑛‖ = ‖𝑝𝑛(𝐴)𝑏‖ ≤ ‖𝑝𝑛(𝐴)‖‖𝑏‖ =⇒ ‖𝑟𝑛‖
‖𝑏‖

≤ ‖𝑝𝑛(𝐴)‖.

Assuming that 𝐴 is diagonalisable, 𝐴 = 𝑉 Λ𝑉 −1, then 𝐴𝑠 = 𝑉 Λ𝑠𝑉 −1, and

‖𝑝𝑛(𝐴)‖ = ‖𝑉 𝑝𝑛(Λ
𝑠)𝑉 −1‖ ≤ ‖𝑉 ‖‖𝑉 −1‖⏟  ⏞  

=𝜅(𝑉 )

‖𝑝𝑛‖Λ(𝐴),

where Λ(𝐴) is the set of eigenvalues of 𝐴, and

‖𝑝‖Λ(𝐴) = sup
𝑥∈Λ(𝐴)

‖𝑝(𝑥)‖.

Hence we see that GMRES will converge quickly if 𝑉 is well-conditioned, and 𝑝(𝑥) is small for all 𝑥 ∈ Λ(𝐴). This
latter condition is not trivial due to the 𝑝(0) = 1 requirement. One way it can happen is if 𝐴 has all eigenvalues
clustered in a small number of groups, away from $0$. Then we can find a low degree polynomial that passes
through 1 at 𝑥 = 0, and 0 near each of the clusters. Then GMRES will essentially converge in a small number of
iterations (equal to the degree of the polynomial). There are problems if the eigenvalues are scattered over a wide
region of the complex plane: we need a very high degree polynomial to make 𝑝(𝑥) small at all the eigenvalues and
hence we need a very large number of iterations. Similarly there are problems if eigenvalues are very close to zero.

Exercise 114 Investigate the convergence of the matrices provided by the functions cla_utils.exercises10.
get_AA100(), cla_utils.exercises10.get_BB100(), and cla_utils.exercises10.get_CC100(), by
looking at the residual after each iteration (which should be provided by cla_utils.exercises10.GMRES()
as specified in the docstring). What do you observe? What is it about the three matrices that causes this different
behaviour?

6.5 Preconditioned GMRES
Supplementary video

https://player.vimeo.com/video/454218547

This final topic has been a strong focus of computational linear algebra over the last 30 years. Typically, the matrices
that we want to solve do not have eigenvalues clustered in a small number of groups, and so GMRES is slow. The
solution (and the challenge) is to find a matrix 𝐴 such that 𝐴𝑥 = 𝑦 is cheap to solve (diagonal, or triangular, or
something else) and such that 𝐴−1𝐴 does have eigenvalues clustered in a small number of groups (e.g. 𝐴 is a
good approximation of 𝐴, so that 𝐴−1𝐴 ≈ 𝐼 which has eigenvalues all equal to 1). We call 𝐴 the preconditioning
matrix, and the idea is to apply GMRES to the (left) preconditioned system

𝐴−1𝐴𝑥 = 𝐴−1𝑏.

6.5. Preconditioned GMRES 65

https://player.vimeo.com/video/454218547


MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

GMRES on this preconditioned system is equivalent to the following algorithm, called preconditioned GMRES.

• SOLVE 𝐴�̃� = 𝑏.

• 𝑞1 ← �̃�/‖�̃�‖

• FOR 𝑛 = 1, 2, . . .

– SOLVE 𝐴𝑣 = 𝐴𝑞𝑛

– FOR 𝑗 = 1 TO 𝑛

∗ ℎ𝑗𝑛 = 𝑞*𝑗 𝑣

∗ 𝑣 = 𝑣 − ℎ𝑗𝑛𝑞𝑗

– END FOR

– ℎ𝑛+1,𝑛 ← ‖𝑣‖

– 𝑞𝑛+1gets v/|v|`

– FIND 𝑦 TO MINIMIZE ‖�̃�𝑛𝑦 − ‖�̃�‖𝑒1‖

– 𝑥𝑛 ← �̂�𝑛𝑦

– CHECK IFℛ𝑛 < TOL

• END FOR

Exercise 115 Show that this algorithm is equivalent to GMRES applied to the preconditioned system.

The art and science of finding preconditioning matrices 𝐴 (or matrix-free procedures for solving 𝐴𝑥 = 𝑦) for
specific problems arising in data science, engineering, physics, biology etc. can involve ideas from linear algebra,
functional analysis, asymptotics, physics, etc., and represents a major activity in scientific computing today.

6.6 Knowing when to stop
We should stop an iterative method when the error is sufficiently small. But, we don’t have access the the exact
solution, so we can’t compute the error. Two things we can look at are:

• The residual 𝑟𝑘 = 𝐴𝑥𝑘 − 𝑏, or

• The pseudo-residual 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, which both tend to zero as 𝑥𝑘 → 𝑥* provided that 𝐴 is invertible.

How do their sizes relate to the size of 𝑒𝑘 = 𝑥𝑘 − 𝑥*?

𝑒𝑘 =𝑥* − 𝑥𝑘

=𝐴−1(𝐴𝑥* −𝐴𝑥𝑘)

=𝐴−1(𝑏−𝐴𝑥𝑘)

=𝐴−1𝑟𝑘,

so ‖𝑒𝑘‖ ≤ ‖𝐴−1‖‖𝑟𝑘‖.

The relative error ‖𝑒𝑘‖/‖𝑥*‖ satisfies

‖𝑒𝑘‖
‖𝑥*‖

=
‖𝐴−1𝑟𝑘‖
‖𝑥‖

≤ ‖𝐴−1‖‖𝑟
𝑘‖
‖𝑥‖

≤ ‖𝐴−1‖‖𝐴‖‖𝑟
𝑘‖
‖𝑏‖

,

so the relative error is bounded from above by the condition number of ‖𝐴‖ multiplied by the relative residual
‖𝑟𝑘‖/‖𝑏‖. If the condition number is large, it is possible to have a small residual but still have a large condition
number.

Similar results hold for the pseudoresidual, but are more complicated to show for the case of GMRES.

66 Chapter 6. Iterative Krylov methods for 𝐴𝑥 = 𝑏



CHAPTER

SEVEN

PRECONDITIONING KRYLOV METHODS

In this section we will discuss some preconditioners and how to analyse them. The most important question is how
quickly the preconditioned GMRES algorithm converges for a given matrix and preconditioner. We will focus on
the link between stationary iterative methods and preconditioners.

7.1 Stationary iterative methods
As we have already discussed, given a matrix equation 𝐴𝑥 = 𝑏, iterative methods provide a way of obtaining a
(hopefully) better approximate solution 𝑥𝑘+1 from a previous approximate 𝑥𝑘. Stationary iterative methods are
defined from splittings as follows.

Definition 116 (Stationary iterative methods) A stationary iterative method is constructed from matrices𝑀 and
𝑁 with 𝐴 = 𝑀 +𝑁 . Then the iterative method is defined by

𝑀𝑥𝑘+1 = −𝑁𝑥𝑘 + 𝑏.

The word “stationary” refers to the fact that exactly the same thing is done at each iteration. This contrasts with
Krylov methods such as GMRES, where the sequence of operations depends on the previous iterations (e.g. a
different size least square system is solve in each GMRES iteration).

In this section we will introduce/recall some classic stationary methods.

Definition 117 (Richardson iteration) For a chosen parameter 𝜔 > 0, take 𝑀 = 𝐼/𝜔. This defines the iterative
method given by

𝑥𝑘+1 = 𝑥𝑘 + 𝜔
(︀
𝑏−𝐴𝑥𝑘

)︀
.

Richardson, L.F. (1910). The approximate arithmetical solution by finite differences of physical problems involving
differential equations, with an application to the stresses in a masonry dam. Philos. Trans. Roy. Soc. London Ser.
A 210: 307-357.

This approach is convenient for parallel computing, because each entry in 𝑥𝑘+1 can be updated independently,
once 𝐴𝑥𝑘 has been evaluated.

Definition 118 (Jacobi’s method) Split 𝐴 = 𝐿 + 𝐷 + 𝑈 with 𝐿 strictly lower triangular, 𝐷 diagonal and 𝑈
strictly upper triangular, i.e.

𝐿𝑖𝑗 = 0, 𝑗 ≥ 𝑖, 𝐷𝑖𝑗 = 0, 𝑖 ̸= 𝑗, 𝑈𝑖𝑗 , 𝑖 ≥ 𝑗.

Then, Jacobi’s method is

𝐷𝑥𝑘+1 = 𝑏− (𝐿+ 𝑈)𝑥𝑘.

𝐷 is very cheap to invert because it is diagonal; entries in 𝑥𝑘+1 can be updated independently once (𝐿+𝑈)𝑥𝑘 has
been evaluated.

Jacobi, C.G.J. (1845). Ueber eine neue Aufloesungsart der bei der Methode der kleinsten Quadrate vorkommenden
linearen Gleichungen, Astronomische Nachrichten, 22, 297-306.

67



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Definition 119 (Gauss-Seidel Method) Split 𝐴 = 𝐿 +𝐷 + 𝑈 with 𝐿 strictly lower triangular, 𝐷 diagonal and
𝑈 strictly upper triangular. The Gauss-Seidel method (forward or backwards) is

(𝐿+𝐷)𝑥𝑘+1 = 𝑏− 𝑈𝑥𝑘, or, (𝑈 +𝐷)𝑥𝑘+1 = 𝑏− 𝐿𝑥𝑘.

Each Gauss-Seidel iteration requires the solution of a triangular system by forward/backward substitution.

Exercise 120 Show that forward Gauss-Seidel is a modification Jacobi’s method but using new values as soon as
possible.

Definition 121 (Scaled Gauss-Seidel method) We introduce a scaling/relaxation parameter 𝜔 > 0 and take
𝑀 = 𝐷/𝜔 + 𝐿, so that (︂

1

𝜔
𝐷 + 𝐿

)︂
𝑥𝑘+1 = 𝑏+

(︂(︂
1

𝜔
− 1

)︂
𝐷 − 𝑈

)︂
𝑥𝑘.

For 𝜔 = 1, we recover Gauss-Seidel. For 1 < 𝜔 < 2, we often obtain faster convergence. This is called Successive
Over-Relaxation (SOR). The optimal value of𝜔 is known for some problems. This was state of the art for numerical
solution of PDEs in the 50s and 60s.

• Richardson and Jacobi are simultaneous displacement methods: updates can be done simultaneously (e.g.
on a GPU). Changing variables by a permutation does not alter the algorithm.

• Gauss-Seidel and SOR are successive displacement methods: we can only overwrite the old vector with
the new one element by element. Successive displacement methods usually converge faster, and changing
variables by a permutation does alter the algorithm.

7.2 Using splitting methods as preconditioners
A (non-symmetric) preconditioner 𝐴 can be built from a splitting method by applying one iteration with initial
guess 𝑥0 = 0.

A preconditioner is used to compute 𝑣 by solving

𝐴𝑣 = 𝑟,

such that 𝐴𝑣 ≈ 𝑟, and the above equation is easy to solve. We can use a stationary method by setting 𝑣 = 𝑥1 and
𝑥0 = 0,

to get

𝑀𝑣 := 𝑀𝑥1 = −𝑁 𝑥0⏟ ⏞ 
=0

+𝑟 = 𝑟,

i.e. we are choosing 𝐴 = 𝑀 . Later we shall see how to relate convergence properties of splitting methods to the
convergence of preconditioned CG using 𝐴 = 𝑀 .

7.3 Symmetric iterative methods
Consider a symmetric matrix 𝐴 = 𝐴𝑇 If we can build iterative methods from the splitting 𝐴 = 𝑀 +𝑁 , then we
can also build iterative methods from the splitting 𝐴 = 𝐴𝑇 = 𝑀𝑇 +𝑁𝑇 . We can then combine them together.

Definition 122 (Symmetric iterative method) Given a splitting 𝐴 = 𝑀 +𝑁 , a symmetric method performs one
stationary iteration using 𝑀 +𝑁 , followed by one stationary iteration using 𝑀𝑇 +𝑁𝑇 , i.e.

𝑀𝑥𝑘+ 1
2 = −𝑁𝑥𝑘 + 𝑏, 𝑀𝑇𝑥𝑘+1 = −𝑁𝑇𝑥𝑘+ 1

2 + 𝑏.

Example 123 (Symmetric Successive Over-Relaxation (SSOR).) For a symmetric matrix 𝐴 = 𝐿 + 𝐷 + 𝑈 ,
𝐿 = 𝑈𝑇 . The symmetric version of SOR is then

(𝐿+
1

𝜔
𝐷)𝑥𝑘+ 1

2 =

(︂(︂
1

𝜔
− 1

)︂
𝐷 − 𝑈

)︂
𝑥𝑘 + 𝑏,

(𝑈 +
1

𝜔
𝐷)𝑥𝑘+1 =

(︂(︂
1

𝜔
− 1

)︂
𝐷 − 𝐿

)︂
𝑥𝑘+ 1

2 + 𝑏.

68 Chapter 7. Preconditioning Krylov methods



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Some Krylov methods, notably the Conjugate Gradient method, require the preconditioner 𝐴 to be symmetric. We
can build symmetric preconditioners from symmetric splitting methods. Write the symmetric iteration as a single
step with 𝑥0 = 0.

𝑀𝑇𝑥1 = (𝑀 −𝐴)𝑇𝑥
1
2 + 𝑏,

= (𝑀 −𝐴)𝑇𝑀−1𝑏+ 𝑏,

= (𝑀𝑇 +𝑀 −𝐴)𝑀−1𝑏,

so that

𝑥1 = 𝑀−𝑇 (𝑀𝑇 +𝑀 −𝐴)𝑀−1𝑏,

i.e. 𝐴−1 = 𝑀−𝑇 (𝑀𝑇 +𝑀 −𝐴)𝑀−1.

Example 124 (Symmetric Gauss-Seidel preconditioner) 𝐴−1 = (𝐿+𝐷)−𝑇𝐷(𝐿+𝐷)−1.

7.4 Convergence criteria for stationary methods
In this section we will look at the convergence of stationary methods. This is relevant because it relates directly
to the convergence properties of the corresponding preconditioned Krylov method when the stationary method is
used as a preconditioner.

For a splitting 𝐴 = 𝑀 +𝑁 , recall that the iterative method is

𝑀𝑥𝑘+1 = −𝑁𝑥𝑘 + 𝑏.

On the other hand, the solution 𝑥* of 𝐴𝑥 = 𝑏 satisfies

𝑀𝑥* = −𝑁𝑥* + 𝑏.

Subtracting these two equations gives

𝑀𝑒𝑘+1 = −𝑁𝑒𝑘, 𝑒𝑘 = 𝑥* − 𝑥𝑘,

so

𝑒𝑘+1 = 𝐶𝑒𝑘 =⇒ 𝑒𝑘 = 𝐶𝑘𝑒0, 𝐶 := −𝑀−1𝑁 = −𝑀−1(𝐴−𝑀) = 𝐼 −𝑀−1𝐴.

𝐶 is called the iteration matrix.

For a symmetric iterative method,

𝑀𝑥𝑘+ 1
2 = −𝑁𝑥𝑘 + 𝑏, 𝑀𝑇𝑥𝑘+1 = −𝑁𝑇𝑥𝑘+ 1

2 + 𝑏,

we subtract 𝐴𝑥* = 𝑏 from both equations to get

𝑀𝑒𝑘+
1
2 = −𝑁𝑒𝑘, 𝑀𝑇 𝑒𝑘+1 = −𝑁𝑇 𝑒𝑘+

1
2 .

Then eliminating 𝑒𝑘+1/2 gives

𝑀𝑇 𝑒𝑘+1 = 𝑁𝑇𝑀−1𝑁𝑒𝑘,

i.e. the iteration matrix is

𝐶 = 𝑀−𝑇𝑁𝑇𝑀−1𝑁

Exercise 125 Show that

𝐶 = 𝐼 − (𝑀𝑠)
−1

𝐴,

where

𝑀𝑠 = 𝑀(𝑀 +𝑀𝑇 −𝐴)−1𝑀𝑇 .

From the above exercise, note the relationship between 𝑀𝑠 and 𝐴 for symmetric methods.

7.4. Convergence criteria for stationary methods 69



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Definition 126 (Convergence of stationary methods) An iterative method based on the splitting 𝐴 = 𝑀 + 𝑁
with iteration matrix 𝐶 = −𝑀−1𝑁 is called {convergent} if

𝑦𝑘 = 𝐶𝑘𝑦0 → 0

for any initial vector 𝑦0.

Exercise 127 Show that this implies that 𝑒𝑘 = 𝑥* − 𝑥𝑘 → 0 i.e. 𝑥𝑘 → 𝑥* as 𝑘 →∞.

Theorem 128 (A first convergence criterion) If ‖𝐶‖ < 1, using the operator norm for some chosen vector norm,
then the iterative method converges.

Proof 129

‖𝑦𝑘‖ =‖𝐶𝑘𝑦0‖
≤‖𝐶𝑘‖‖𝑦0‖

≤ (‖𝐶‖)𝑘 ‖𝑦0‖ → 0 as 𝑘 →∞.

This is only a sufficient condition. There may be matrices 𝐶 with ‖𝐶‖ > 1, but the method is still convergent.

To obtain a necessary condition, we need to use the spectral radius.

Definition 130 The spectral radius 𝜌(𝐶) of a matrix𝐶 is the maximum of the absolute values of all the eigenvalues
𝜆𝑖 of 𝐶:

𝜌(𝐶) = max
1≤𝑖≤𝑛

|𝜆𝑖|.

Theorem 131 An iterative method converges ⇐⇒ 𝜌(𝐶) < 1.

Proof 132 [Proof that 𝜌(𝐶) ≥ 1 =⇒ non-convergence]

If 𝜌(𝐶) ≥ 1, then 𝐶 has an eigenvector 𝑣 with ‖𝑣‖2 = 1 and eigenvalue 𝜆 with |𝜆| > 1. Then

‖𝐶𝑘𝑣‖2 = ‖𝜆𝑘𝑣‖2 = |𝜆|𝑘‖𝑣‖2 ≥ 1,

which does not converge to zero.

[Proof that 𝜌(𝐶) < 1 =⇒ convergence]

Assume a linearly independent eigenvalue expansion (not necessary for the proof but it simplifies things a lot)
𝑧 =

∑︀𝑛
𝑖=1 𝛼𝑖𝑣𝑖. Then,

𝐶𝑘𝑧 =

𝑛∑︁
𝑖=1

𝛼𝑖𝐶
𝑘𝑣𝑖 =

𝑛∑︁
𝑖=1

𝛼𝑖𝜆
𝑘𝑣𝑖 → 0.

• For symmetric matrices 𝐵, 𝜌(𝐵) = ‖𝐵‖2, so

the two convergence theorems are related.

• If ‖𝐶‖ = 𝑐 < 1, then

‖𝑒𝑘+1‖ = ‖𝐶𝑒𝑘‖ ≤ ‖𝐶‖‖𝑒𝑘‖ = 𝑐‖𝑒𝑘‖.

This guarantees that the error will be reduced by a factor of at least 𝑐 in each iteration. If we only have
𝜌(𝐶) < 1, not ‖𝐶‖ < 1 then the error may not converge monotonically.

Example 133 (Range of SOR parameter) We can use this to analyse the SOR parameter 𝜔.(︂
1

𝜔
𝐷 + 𝐿

)︂
𝑥𝑘+1 = 𝑏+

(︂(︂
1

𝜔
− 1

)︂
𝐷 − 𝑈

)︂
𝑥𝑘

What values of 𝜔? For SOR,iteration matrix 𝐶 is

𝐶 =

(︂
1

𝜔
𝐷 + 𝐿

)︂−1(︂
1− 𝜔

𝜔
𝐷 − 𝑈

)︂
= (𝐷 + 𝜔𝐿)−1((1− 𝜔)𝐷 − 𝜔𝑈).

70 Chapter 7. Preconditioning Krylov methods



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

so

det(𝐶) = det
(︀
(𝐷 + 𝜔𝐿)−1((1− 𝜔)𝐷 − 𝜔𝑈)

)︀
= det

(︀
(𝐷 + 𝜔𝐿)−1

)︀
det ((1− 𝜔)𝐷 − 𝜔𝑈)

= det
(︀
𝐷−1

)︀
det(𝐷) det

(︀
(𝐼 − 𝜔𝐼)− 𝜔𝐷−1𝑈

)︀
= det ((1− 𝜔)𝐼) = (1− 𝜔)𝑛.

The determinant is the product of the eigenvalues, hence 𝜌(𝐶) < 1 requires |1− 𝜔| < 1.

7.5 Splitting methods as preconditioners
Recall that preconditioned GMRES converges well if the eigenvalues of 𝐴−1𝐴 are clustered together.

Theorem 134 Let 𝐴 be a matrix with splitting 𝑀 +𝑁 , such that 𝜌(𝐶) < 𝑐 < 1. Then, the eigenvalues of the left
preconditioned matrix 𝐴−1𝐴 with 𝐴 = 𝑀 are located in a disk of radius 𝑐 around 1 in the complex plane.

Proof 135

𝐶 = −𝑀−1𝑁 = 𝑀−1(𝑀 −𝐴) = 𝐼 −𝑀−1𝐴.

Then,

1 > 𝑐 > 𝜌(𝐶) = 𝜌(𝐼 −𝑀−1𝐴),

and the result follows since 𝐼 and 𝑀−1𝐴 have a simultaneous eigendecomposition.

We deduce that good convergence of the GMRES algorithm occurs when 𝑐 is small.

For symmetric splittings, we have already observed that the iteration matrix is

𝐶 = 𝐼 − (𝑀𝑠)
−1

𝐴,

where

𝑀𝑠 = 𝑀(𝑀 +𝑀𝑇 −𝐴)−1𝑀𝑇 .

For symmetric splittings we can say a little more about the preconditioner.

Theorem 136 Let 𝐴 be a matrix with splitting 𝑀 +𝑁 , such that the symmetric splitting has iteration matrix

𝜌(𝐶) = 𝑐 < 1,

and assume further that 𝑀𝑠 is positive definite.

Then, the eigenvalues of the symmetric preconditioned matrix 𝐴−1𝐴 are contained in the interval [1− 𝑐, 1 + 𝑐].

Proof 137 We have

𝐶 = 𝐼 − (𝑀𝑠)
−1

𝐴,

= 𝐼 −𝐴−1𝐴,

so 𝜌(𝐼 − 𝐴−1𝐴) = 𝜌(𝐶) = 𝑐. Further, 𝑀𝑠 is symmetric and positive definite, so there exists a unique symmetric
positive definite matrix square root 𝑆 such that 𝑆𝑆 = 𝑀𝑠. Then,

𝑀−1
𝑠 𝐴 = 𝑆𝑆𝐴 = 𝑆(𝑆𝐴𝑆)𝑆−1.

Thus, 𝑀−1
𝑠 𝐴 is similar to (and therefore has the same eigenvalues as) 𝑆𝐴𝑆, which is symmetric, and therefore

has real eigenvalues, and the result follows.

7.5. Splitting methods as preconditioners 71



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

7.6 Convergence analysis for Richardson
First we examine Richardson iteration. In the unscaled case,

𝑥𝑘+1 = 𝑥𝑘 −
(︀
𝐴𝑥𝑘 − 𝑏

)︀
, 𝑀 = 𝐼, 𝑁 = 𝐴− 𝐼, =⇒ 𝐶 = 𝐼 −𝐴.

Let 𝑒 be an eigenvector of 𝐴 with eigenvalue 𝜆, so 𝐴𝑒 = 𝜆𝑒. Then (𝐼 − 𝐴)𝑒 = 𝑒 − 𝜆𝑒 = (1 − 𝜆)𝑒. So, 𝑒 is an
eigenvector of 𝐼 − 𝐴 with eigenvalue 1− 𝜆. Richardson’s method will converge if 𝜌(𝐶) < 1 i.e. |1− 𝜆| < 1 for
all eigenvalues 𝜆 of 𝐴.

This is restrictive, which motivates the scaled Richardson iteration,

𝑥𝑘+1 = 𝑥𝑘 − 𝜔
(︀
𝐴𝑥𝑘 − 𝑏

)︀
, 𝑀 =

𝐼

𝜔
, 𝑁 = 𝐴− 𝐼

𝜔
, =⇒ 𝐶 = 𝐼 − 𝜔𝐴.

If 𝐴 has eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛 then the iterative matrix 𝐶 has eigenvalues 1 − 𝜔𝜆1, 1 − 𝜔𝜆2, . . . , 1 − 𝜔𝜆𝑛.
This requires |1− 𝜔𝜆𝑖| < 1, 𝑖 = 1, . . . , 𝑛, for convergence.

If, further, 𝐴 is symmetric positive definite, then all eigenvalues are real and positive. Then, all of the eigenvalues
of 𝐶 lie between 1 − 𝜔𝜆min and 1 − 𝜔𝜆max. We can minimise 𝜌(𝐶) by choosing 𝜔 = 2/(𝜆min + 𝜆max). The
resulting iteration matrix has spectral radius

𝜌(𝐶) = 1− 2
𝜆min

𝜆min + 𝜆max
=

𝜆max − 𝜆min

𝜆min + 𝜆max
.

7.7 Convergence analysis for symmetric matrices
For a symmetric positive definite matrix 𝐴, recall the Rayleigh Quotient formula,

𝜆max = max
�̸�=0

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
≡ ‖𝐴‖22, 𝜆min = min

𝑥 ̸=0

𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
,

implying that

𝜆min‖𝑦‖22 ≤ 𝑦𝑇𝐴𝑦 ≤ 𝜆max‖𝑦‖22

for any non-zero vector 𝑦.

Definition 138 (𝐴-weighted norm) For symmetric positive definite 𝐴, we can define the weighted vector norm

‖𝑥‖𝐴 =
√
𝑥𝑇𝐴𝑥,

and the corresponding matrix (operator) norm

‖𝐵‖𝐴 = ‖𝐴1/2𝐵𝐴−1/2‖2.

These norms are useful for studying convergence of iterative methods for 𝐴𝑥 = 𝑏 in the symmetric positive definite
case.

Theorem 139 For a splitting 𝐴 = 𝑀 +𝑁 , if the (symmetric) matrix 𝑀 +𝑀𝑇 −𝐴 is positive definite then

‖𝐼 −𝑀−1𝐴‖𝐴 < 1.

Proof 140 If 𝑦 = (𝐼 −𝑀−1𝐴)𝑥, 𝑤 = 𝑀−1𝐴𝑥, then

‖𝑦‖2𝐴 = (𝑥− 𝑤)𝑇𝐴(𝑥− 𝑤) = 𝑥𝑇𝐴𝑥− 2𝑤𝑇𝑀𝑤 + 𝑤𝑇𝐴𝑤

= 𝑥𝑇𝐴𝑥− 𝑤𝑇 (𝑀 +𝑀𝑇 )𝑤 + 𝑤𝑇𝐴𝑤

= 𝑥𝑇𝐴𝑥− 𝑤𝑇 (𝑀 +𝑀𝑇 −𝐴)𝑤

≤ ‖𝑥‖2𝐴 − 𝜇min‖𝑤‖22,

where 𝜇min is the (positive) minimum eigenvalue of 𝑀𝑇 +𝑀 −𝐴.

72 Chapter 7. Preconditioning Krylov methods



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Further,

‖𝑤‖22 = 𝑥𝑇𝐴
(︀
𝑀−1

)︀𝑇
𝑀−1𝐴𝑥

=
(︁
𝐴1/2𝑥

)︁𝑇
𝐴1/2

(︀
𝑀−1

)︀𝑇
𝑀−1𝐴1/2

(︁
𝐴1/2𝑥

)︁
≥ �̂�min‖𝐴1/2𝑥‖22 = �̂�min‖𝑥‖2𝐴,

where �̂�min is the minimum eigenvalue of 𝐴1/2
(︀
𝑀−1

)︀𝑇
𝑀−1𝐴1/2 i.e. the square of the minimum eigenvalue of

𝑀−1𝐴1/2, which is invertible so �̂�min > 0. If 𝑦 = (𝐼 −𝑀−1𝐴)𝑥, 𝑤 = 𝑀−1𝐴𝑥, then

‖𝑦‖2𝐴 ≤ (1− 𝜇min�̂�min) ‖𝑥‖2𝐴 < ‖𝑥‖2𝐴.

This enables us to show the following useful result for symmetric positive definite matrices.

Theorem 141 Let 𝐴 be a symmetric positive definite matrix with splitting 𝐴 = 𝑀 +𝑁 , if 𝑀 is positive definite,
then

𝜌(𝐼 −𝑀−1𝐴) = ‖𝐼 −𝑀−1𝐴‖𝐴 = ‖𝐼 −𝑀−1𝐴‖𝑀 .

Proof 142

𝐼 −𝐴1/2𝑀−1𝐴1/2 = 𝐴1/2(𝐼 −𝑀−1𝐴)𝐴−1/2,

𝐼 −𝑀−1/2𝐴𝑀−1/2 = 𝑀1/2(𝐼 −𝑀−1𝐴)𝑀−1/2,

so 𝐼−𝑀−1𝐴, 𝐼−𝐴1/2𝑀−1𝐴1/2, and 𝐼−𝑀−1/2𝐴𝑀−1/2 all have the same eigenvalues, since they are similar
matrices. Hence,

𝜌(𝐼 −𝑀−1𝐴) = 𝜌(𝐼 −𝐴1/2𝑀−1𝐴1/2)

= ‖𝐼 −𝐴1/2𝑀−1𝐴1/2‖2
= ‖𝐼 −𝑀−1𝐴‖𝐴,

and similarly for 𝐼 −𝑀−1/2𝐴𝑀−1/2.

The consequence of this is that if𝑀+𝑀𝑇−𝐴 is symmetric positive definite then there is a guaranteed reduction in
the 𝐴-norm of the error in each iteration. If 𝑀 is also symmetric positive definite the there is guaranteed reduction
in the 𝑀 -norm of the error in each iteration.

Now we apply this to the convergence of Jacobi iteration. In this case 𝑀 = 𝐷, so 𝑀𝑇 +𝑀 −𝐴 = 2𝐷−𝐴 which
may not be positive definite. We generalise to scaled Jacobi iteration with 𝑀 = 𝐷/𝜔.

Proposition 143 Let 𝐴 be a symmetric positive definite matrix. Let 𝜆 be the (real) maximum eigenvalue of
𝐷−1/2𝐴𝐷−1/2. If 𝜔 < 2/𝜆 then scaled Jacobi iteration converges.

Proof 144 For scaled Jacobi iteration with 𝑀 = 𝐷/𝜔, we have 𝑀𝑇 +𝑀 − 𝐴 = 2𝐷/𝜔 − 𝐴. To check positive
definiteness we need to show that

𝑥𝑇

(︂
2

𝜔
𝐷 −𝐴

)︂
𝑥 > 0,

for all 𝑥 ̸= 0.

To show this, we write 𝑥 = 𝐷−1/2𝑦, so that

𝑥𝑇

(︂
2

𝜔
𝐷 −𝐴

)︂
𝑥 = 𝑦𝑇

(︂
2

𝜔
𝐼 −𝐷−1/2𝐴𝐷−1/2

)︂
𝑦

≥ 𝜇‖𝑦‖2 > 0,

provided that the minimum eigenvalue 𝜇 of 𝐹 = 2
𝜔 𝐼 −𝐷−1/2𝐴𝐷−1/2 is positive (it is real since 𝐹 is symmetric).

We have 𝜇 = 2/𝜔 − 𝜆 Hence, 2𝐷/𝜔 − 𝐴 is positive definite (so scaled Jacobi converges) if 2/𝜔 − 𝜆 > 0 i.e.
𝜔 < 2/𝜆.

7.7. Convergence analysis for symmetric matrices 73



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Proposition 145 Let 𝐴 be a symmetric positive definite matrix. Then Gauss-Seidel iteration always converges.

Proof 146 For Gauss-Seidel,

𝑀𝑇 +𝑀 −𝐴 = (𝐷 + 𝐿)𝑇 +𝐷 + 𝐿−𝐴 = 𝐷 + 𝑈 +𝐷 + 𝐿−𝐴 = 𝐷,

which is symmetric-positive definite, so Gauss-Seidel always converges.

Proposition 147 Let 𝐴 be a symmetric positive definite matrix. Then SOR converges provided that 0 < 𝜔2.

Proof 148 For SOR,

𝑀𝑇 +𝑀 −𝐴 =

(︂
1

𝜔
𝐷 + 𝐿

)︂𝑇

+
1

𝜔
𝐷 + 𝐿−𝐴

=
2

𝜔
𝐷 + 𝑈 + 𝐿− (𝐿+𝐷 + 𝑈) =

(︂
2

𝜔
− 1

)︂
𝐷,

which is symmetric positive definite provided that 0 < 𝜔 < 2.

7.8 An example matrix
We consider stationary methods for an example arising from the finite difference discretisation of the two point
boundary value problem

−𝑑2𝑢

𝑑𝑥2
= 𝑓, 𝑢(0) = 𝑢(1) = 0.

Here, 𝑓 is assumed known and we have to find 𝑢. We approximate this problem by writing 𝑢𝑘 = 𝑢(𝑘/(𝑛+1)) for
𝑘 = 0, 1, 2, . . . , 𝑛 + 1. From the boundary conditions we have 𝑢0 = 𝑢𝑛+1 = 0, meaning we just have to find 𝑢𝑘

with 1 ≤ 𝑘 ≤ 𝑛, that solve the finite difference approximation

−𝑢𝑘−1 + 2𝑢𝑘 − 𝑢𝑘+1 = 𝑓𝑘, 1 ≤ 𝑘 ≤ 𝑛,

where 𝑓𝑘 = 𝑓(𝑘/𝑛)/𝑛2, 1 ≤ 𝑘 ≤ 𝑛. Taking into account the boundary conditions 𝑢0 = 𝑢𝑛+1 = 0, we can write
this as a matrix system 𝐴𝑥 = 𝑏 with

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 · · · · · · 0
−1 2 −1 · · · 0

0 −1 2 · · ·
...

...
...

... 0 −1 2 −1
0 0 · · · −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑥 =

⎛⎜⎜⎜⎝
𝑢1

𝑢2

...
𝑢𝑛

⎞⎟⎟⎟⎠ , 𝑏 =

⎛⎜⎜⎜⎝
𝑓1
𝑓2
...
𝑓𝑛

⎞⎟⎟⎟⎠ .

However, it is possible to evaluate 𝐴𝑥 and to implement our classic stationary iterative methods without ever
forming 𝐴. This is critically important for efficient implementations (especially when extending to 2D and 3D
problems).

We introduce this example matrix because it is possible to compute spectral radii for all of the matrices arising in
the analysis of classic stationary methods. In the next example we consider Jacobi.

Example 149 (Jacobi iteration for the example matrix) In this case, 𝐷 = 2𝐼 . Thus in fact, scaled Jacobi and
scaled Richardson are equivalent. We have to find the maximum eigenvalue of 𝐾 = 𝐷−1𝐴. We can compute this
by knowing that the eigenvectors 𝑣 of 𝐾 are all of the form

𝑣 =

⎛⎝⎛⎝ sin(𝑙𝜋/(𝑛+ 1))
sin(2𝑙𝜋/(𝑛+ 1))
sin(𝑛𝑙𝜋/(𝑛+ 1))

⎞⎠⎞⎠ ,

with one eigenvector for each value of 0 < 𝑙 < 𝑛+1. This can be proved by considering symmetries of the matrix,
but here we just assume this form and establish that we have eigenvectors after substituting into the definition of

74 Chapter 7. Preconditioning Krylov methods



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

an eigenvector 𝐴𝑣 = 𝜆𝑣. This is a general approach that can be tried for any matrices arising in the analysis of
convergence of classic stationary methods for this example matrix.

(𝐷−1𝐴𝑢)𝑘 = −𝑢𝑘−1/2 + 𝑢𝑘 − 𝑢𝑘+1/2 = 𝜆𝑢𝑘

which becomes

𝜆 sin(𝑘𝑙𝜋/(𝑛+ 1)) = − sin((𝑙 − 1)𝑘𝜋/(𝑛+ 1))/2 + sin(𝑘𝑙𝜋/(𝑛+ 1))− sin((𝑙 + 1)𝑘𝜋/(𝑛+ 1))/2,

and you can use trigonometric formulae, or write

𝜆 sin(𝑘𝑙𝜋/(𝑛+ 1) = − sin((𝑙 − 1)𝑘𝜋/(𝑛+ 1))/2 + sin(𝑙𝑘𝜋/(𝑛+ 1))− sin((𝑙 + 1)𝑘𝜋/(𝑛+ 1))/2

= sin(𝑘𝑙𝜋/(𝑛+ 1))−ℑ (exp(𝑖𝑘(𝑙 − 1)𝜋/(𝑛+ 1)) + exp(𝑖𝑘(𝑙 + 1)𝜋/(𝑛+ 1))) /2

= sin(𝑘𝑙𝜋/(𝑛+ 1))−ℑ ((exp(−𝑖𝑘𝜋/(𝑛+ 1)) + exp(𝑖𝑘𝜋/(𝑛+ 1))) exp(𝑖𝑘𝑙𝜋/(𝑛+ 1))) /2

= sin(𝑘𝑙𝜋/(𝑛+ 1))−ℑ (sin(𝑘𝜋/(𝑛+ 1)) exp(𝑖𝑘𝑙𝜋/(𝑛+ 1)))

= sin(𝑘𝑙𝜋/(𝑛+ 1))(1− sin(𝑘𝜋/(𝑛+ 1)))

and we conclude that 𝜆 = 1− sin(𝑘𝜋/(𝑛+1)) are the eigenvalues with 0 < 𝑘 < 𝑛+1. The maximum eigenvalue
corresponds to 𝑘 = 1 and 𝑘 = 𝑛, with 𝜆 = 1− sin(𝜋/(𝑛+ 1)).

The condition 𝜔 < 2/𝜆 thus requires that

𝜔 <
2

1− sin(𝜋/(𝑛+ 1))
.

Exercise 150 Find the value of 𝜔 for scaled Jacobi such that the convergence rate is maximised, i.e. so that 𝜌(𝐶)
is minimised. What happens to this rate as 𝑛→∞?

7.9 Chebyshev acceleration (nonexaminable in 2023/24)
Say we have computed iterates 𝑥0, 𝑥1, . . . , 𝑥𝑘 using

𝑀𝑥𝑘+1 = −𝑁𝑥𝑘 + 𝑏.

If the method is convergent, then these iterates are homing in on the solution. Can we use extrapolation through
these iterates to obtain a better guess for the solution?

Find 𝑐𝑗𝑘, 𝑗 = 1, . . . , 𝑘, with 𝑦𝑘 =

𝑘∑︁
𝑗=0

𝑐𝑗𝑘𝑥
𝑗 ,

with 𝑦𝑘 the best possible approximation to 𝑥*.

The usual iterative method has 𝑐𝑘𝑘 = 1, and 𝑐𝑗𝑘 = 0 for 𝑗 < 𝑘. If 𝑥𝑖 = 𝑥*, 𝑖 = 0, 1, . . . , 𝑘 then

𝑦𝑘 =

𝑘∑︁
𝑗=0

𝑐𝑗𝑘𝑥
* = 𝑥*

𝑘∑︁
𝑗=0

𝑐𝑗𝑘,

so we need
∑︀𝑘

𝑗=0 𝑐𝑗𝑘 = 1. Subject to this constraint, we
seek to minimise 𝑦𝑘 − 𝑥* =

∑︀𝑘
𝑗=0 𝑐𝑗𝑘(𝑥

𝑗 − 𝑥*).

We can interpret this in terms of matrix polynomials by writing

𝑥* − 𝑦𝑘 =

𝑘∑︁
𝑗=0

𝑐𝑗𝑘(𝑥
* − 𝑥𝑗),

=

𝑘∑︁
𝑗=0

𝑐𝑗𝑘
(︀
−𝑀−1𝑁

)︀𝑗
𝑒0,

= 𝑝𝑘
(︀
−𝑀−1𝑁

)︀
𝑒0,

7.9. Chebyshev acceleration (nonexaminable in 2023/24) 75



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

where

𝑝𝑘(𝑋) = 𝑐0𝑘 + 𝑐1𝑘𝑋 + 𝑐2𝑘𝑋
2 + . . .+ 𝑐𝑘𝑘𝑋

𝑘,

with 𝑝𝑘(1) = 1 (from our condition
∑︀𝑘

𝑗=0 𝑐𝑗𝑘 = 1).

We want to try to minimise 𝑦𝑘 − 𝑥* by choosing 𝑐0𝑘, 𝑐1𝑘, . . ., 𝑐𝑘𝑘 so that the eigenvalues of 𝑝𝑘 are as small as
possible. If 𝜆 is an eigenvalue of 𝐶 = −𝑀−1𝑁 , then 𝑝𝑘(𝜆) is an eigenvalue of 𝑝𝑘(𝐶). It is not practical to know
all the eigenvalues of a large matrix, so we will develop methods that work if we know that all eigenvalues of 𝐶
are real, and satisfy −1 < 𝛼 < 𝜆 < 𝛽 < 1, for some constants 𝛼 and 𝛽 (we know that |𝜆| < 1 otherwise the basic
method is not convergent.

If all eigenvalues of 𝐶 are real, and satisfy −1 < 𝛼 < 𝜆 < 𝛽 < 1, then we try to make 𝜌max = max𝛼≤𝑡≤𝛽 |𝑝𝑘(𝑡)|
as small as possible. Then, if 𝜆 is an eigenvalue of 𝐶, then the corresponding eigenvalue of 𝑝𝑘(𝐶) will satisfy
|𝜆𝑝𝑘
| = |𝑝𝑘(𝜆)| ≤ 𝜌max. We have reduced the problem to trying to find polynomials 𝑝(𝑡) that have the smallest

absolute value in a given range, subject to 𝑝(1) = 1. The solution to this problem is known: Chebyshev polyno-
mials.

Definition 151 (The Chebyshev polynomial of degree 𝑘, 𝑇𝑘(𝑡) is defined by the recurrence)

𝑇0(𝑡) = 1, 𝑇1(𝑡) = 𝑡, 𝑇𝑘(𝑡) = 2𝑡𝑇𝑘−1(𝑡)− 𝑇𝑘−2(𝑡).

For example: 𝑇2(𝑡) = 2𝑡𝑇1(𝑡)− 𝑇0(𝑡) = 2𝑡2 − 1.

If we search for the 𝑘-th degree polynomial 𝑝𝑘(𝑡) that minimises

max
−1≤𝑡≤1

|𝑝𝑘(𝑡)|

subject to the constraint that the coefficient of 𝑡𝑘 is 2𝑘−1 then we get the 𝑘-th order Chebyshev polynomial 𝑇𝑘(𝑡).
The maximum value is 1.

This is not quite what we want, so we change variables, to get

𝑇𝑘

(︂
2𝑡− 𝛽 − 𝛼

𝛽 − 𝛼

)︂
minimises max

𝛼≤𝑡≤𝛽
|𝑝𝑘(𝑡)|

subject to the constraint that the coefficient of 𝑡𝑘 is 22𝑘−1/(𝛽 − 𝛼). The maximum value is 1.

Then we scale the polynomial to reach the condition 𝑝𝑘(0) = 1.

𝑝𝑘 =
𝑇𝑘

(︁
2𝑡−𝛽−𝛼
𝛽−𝛼

)︁
𝑇𝑘

(︁
2−𝛽−𝛼
𝛽−𝛼

)︁ minimises max
𝛼≤𝑡≤𝛽

|𝑝𝑘(𝑡)|

subject to the constraint that 𝑝𝑘(0) = 1. The maximum value is

1

𝑇𝑘

(︁
2−𝛽−𝛼
𝛽−𝛼

)︁ .
Say we have computed iterates 𝑥0, 𝑥1, . . . , 𝑥𝑘 using

𝑀𝑥𝑘+1 = −𝑁𝑥𝑘 + 𝑏.

Write

𝑝𝑘 =
𝑇𝑘

(︁
2𝑡−𝛽−𝛼
𝛽−𝛼

)︁
𝑇𝑘

(︁
2−𝛽−𝛼
𝛽−𝛼

)︁
in the form

𝑝𝑘(𝑡) = 𝑐0𝑘 + 𝑐1𝑘𝑡+ 𝑐2𝑘𝑡
2 + . . .+ 𝑐𝑘𝑘𝑡

𝑘,

76 Chapter 7. Preconditioning Krylov methods



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

then

𝑦𝑘 =

𝑘∑︁
𝑗=0

𝑐𝑗𝑘𝑥
𝑘.

There appears to be a practical problem: we need to store 𝑥0, 𝑥1, . . ., 𝑥𝑘 in order to calculate 𝑦𝑘. However, we can
get a formula for 𝑦𝑘 in terms of 𝑦𝑘−1 and 𝑦𝑘−2 by using

𝑇𝑘(𝑡) = 2𝑡𝑇𝑘−1(𝑡)− 𝑇𝑘−2(𝑡).

We get

𝑝𝑘(𝑡) = 2
2𝑡− 𝛽 − 𝛼

𝛽 − 𝛼

𝑇𝑘−1(𝑠)

𝑇𝑘(𝑠)
𝑝𝑘−1(𝑡)−

𝑇𝑘−2(𝑠)

𝑇𝑘(𝑠)
𝑝𝑘−2(𝑡),

where 𝑠 = 2−𝛽−𝛼
𝛽−𝛼 .

After some manipulations we obtain

𝑦𝑘 = 𝜔𝑘

(︀
𝑦𝑘−1 − 𝑦𝑘−2 + 𝛾𝑧𝑘−1

)︀
+ 𝑦𝑘−2,

where

𝛾 =
2

2− 𝛽 − 𝛼
, 𝑀𝑧𝑘−1 = 𝑏−𝐴𝑦𝑘−1.

with starting formulas

𝑦0 = 𝑥0

𝑦1 = 𝑥0 + 𝛾𝑀−1(𝑏−𝐴𝑥0).

Also,

𝜔𝑘 =
1

1− 𝜔𝑘−1/(4𝑠2)
, 𝜔1 = 2.

(See Golub and Van Loan for details).

Chebyshev can dramatically accelerate preconditioners provided that the preconditioned operator is positive defi-
nite and upper and lower bounds on the eigenvalues are known.

The automated documentation for the skeleton code is below.

7.9. Chebyshev acceleration (nonexaminable in 2023/24) 77



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

78 Chapter 7. Preconditioning Krylov methods



CHAPTER

EIGHT

CLA_UTILS PACKAGE

8.1 Submodules

8.2 cla_utils.exercises1 module
cla_utils.exercises1.ABiC(Ahat, xr, xi)

Return the real and imaginary parts of z = A*x, where A = B + iC with

Parameters
Ahat – an mxm-dimensional numpy array with Ahat[i,j] = B[i,j] for i>=j and Ahat[i,j] =
C[i,j] for i<j.

Return zr
m-dimensional numpy arrays containing the real part of z.

Return zi
m-dimensional numpy arrays containing the imaginary part of z.

cla_utils.exercises1.basic_matvec(A, x)
Elementary matrix-vector multiplication.

Parameters

• A – an mxn-dimensional numpy array

• x – an n-dimensional numpy array

returns an m-dimensional numpy array which is the product of A with x

This should be implemented using a double loop over the entries of A

Return b
m-dimensional numpy array

cla_utils.exercises1.column_matvec(A, x)
Matrix-vector multiplication using the representation of the product Ax as linear combinations of the
columns of A, using the entries in x as coefficients.

Parameters

• A – an mxn-dimensional numpy array

• x – an n-dimensional numpy array

Return b
an m-dimensional numpy array which is the product of A with x

This should be implemented using a single loop over the entries of x

cla_utils.exercises1.rank1pert_inv(u, v)
Return the inverse of the matrix A = I + uv^*, where I is the mxm dimensional identity matrix, with

Parameters

79



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

• u – m-dimensional numpy array

• v – m-dimensional numpy array

cla_utils.exercises1.rank2(u1, u2, v1, v2)
Return the rank2 matrix A = u1*v1^* + u2*v2^*.

Parameters

• u1 – m-dimensional numpy array

• u2 – m-dimensional numpy array

• v1 – n-dimensional numpy array

• v2 – n-dimensional numpy array

cla_utils.exercises1.time_matvecs()

Get some timings for matvecs.

cla_utils.exercises1.timeable_basic_matvec()

Doing a matvec example with the basic_matvec that we can pass to timeit.

cla_utils.exercises1.timeable_column_matvec()

Doing a matvec example with the column_matvec that we can pass to timeit.

cla_utils.exercises1.timeable_numpy_matvec()

Doing a matvec example with the builtin numpy matvec so that we can pass to timeit.

8.3 cla_utils.exercises10 module
cla_utils.exercises10.GMRES(A, b, maxit, tol, return_residual_norms=False, return_residuals=False)

For a matrix A, solve Ax=b using the basic GMRES algorithm.

Parameters

• A – an mxm numpy array

• b – m dimensional numpy array

• maxit – integer, the maximum number of iterations

• tol – floating point number, the tolerance for termination

• return_residual_norms – logical

• return_residuals – logical

Return x
an m dimensional numpy array, the solution

Return nits
if converged, the number of iterations required, otherwise equal to -1

Return rnorms
nits dimensional numpy array containing the norms of the residuals at each iteration

Return r
mxnits dimensional numpy array, column k contains residual at iteration k

cla_utils.exercises10.arnoldi(A, b, k)
For a matrix A, apply k iterations of the Arnoldi algorithm, using b as the first basis vector.

Parameters

• A – an mxm numpy array

• b – m dimensional numpy array, the starting vector

80 Chapter 8. cla_utils package



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

• k – integer, the number of iterations

Return Q
an mx(k+1) dimensional numpy array containing the orthonormal basis

Return H
a (k+1)xk dimensional numpy array containing the upper Hessenberg matrix

cla_utils.exercises10.get_AA100()

Get the AA100 matrix.

Return A
a 100x100 numpy array used in exercises 10.

cla_utils.exercises10.get_BB100()

Get the BB100 matrix.

Return B
a 100x100 numpy array used in exercises 10.

cla_utils.exercises10.get_CC100()

Get the CC100 matrix.

Return C
a 100x100 numpy array used in exercises 10.

8.4 cla_utils.exercises2 module
cla_utils.exercises2.GS_classical(A)

Given an mxn matrix A, compute the QR factorisation by classical Gram-Schmidt algorithm, transforming
A to Q in place and returning R.

Parameters
A – mxn numpy array

Return R
nxn numpy array

cla_utils.exercises2.GS_modified(A)
Given an mxn matrix A, compute the QR factorisation by modified Gram-Schmidt algorithm, transforming
A to Q in place and returning R.

Parameters
A – mxn numpy array

Return R
nxn numpy array

cla_utils.exercises2.GS_modified_R(A)
Implement the modified Gram Schmidt algorithm using the lower triangular formulation with Rs provided
from GS_modified_get_R.

Parameters
A – mxn numpy array

Return Q
mxn numpy array

Return R
nxn numpy array

cla_utils.exercises2.GS_modified_get_R(A, k)
Given an mxn matrix A, with columns of A[:, 0:k] assumed orthonormal, return upper triangular nxn matrix
R such that Ahat = A*R has the properties that 1) Ahat[:, 0:k] = A[:, 0:k], 2) A[:, k] is normalised and
orthogonal to the columns of A[:, 0:k].

8.4. cla_utils.exercises2 module 81



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Parameters

• A – mxn numpy array

• k – integer indicating the column that R should orthogonalise

Return R
nxn numpy array

cla_utils.exercises2.orthog_cpts(v, Q)
Given a vector v and an orthonormal set of vectors q_1,. . . q_n, compute v = r + u_1q_1 + u_2q_2 + . . . +
u_nq_n for scalar coefficients u_1, u_2, . . . , u_n and residual vector r

Parameters

• v – an m-dimensional numpy array

• Q – an mxn-dimensional numpy array whose columns are the orthonormal vectors

Return r
an m-dimensional numpy array containing the residual

Return u
an n-dimensional numpy array containing the coefficients

cla_utils.exercises2.orthog_proj(Q)
Given a vector v and an orthonormal set of vectors q_1,. . . q_n, compute the orthogonal projector P that
projects vectors onto the subspace spanned by those vectors.

Parameters
Q – an mxn-dimensional numpy array whose columns are the orthonormal vectors

Return P
an mxm-dimensional numpy array containing the projector

cla_utils.exercises2.orthog_space(V)
Given set of vectors u_1,u_2,. . . , u_n, compute the orthogonal complement to the subspace U spanned by
the vectors.

Parameters
V – an mxn-dimensional numpy array whose columns are the vectors u_1,u_2,. . . ,u_n.

Return Q
an mxl-dimensional numpy array whose columns are an orthonormal basis for the subspace
orthogonal to U, for appropriate l.

cla_utils.exercises2.solve_Q(Q, b)
Given a unitary mxm matrix Q and a vector b, solve Qx=b for x.

Parameters

• Q – an mxm dimensional numpy array containing the unitary matrix

• b – the m dimensional array for the RHS

Return x
m dimensional array containing the solution.

8.5 cla_utils.exercises3 module
cla_utils.exercises3.householder(A)

Given a real mxn matrix A, find the reduction to upper triangular matrix R using Householder transforma-
tions. The reduction should be done “in-place”, so that A is transformed to R.

Parameters
A – an mxn-dimensional numpy array

82 Chapter 8. cla_utils package



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

cla_utils.exercises3.householder_ls(A, b)
Given a real mxn matrix A and an m dimensional vector b, find the least squares solution to Ax = b.

Parameters

• A – an mxn-dimensional numpy array

• b – an m-dimensional numpy array

Return x
an n-dimensional numpy array

cla_utils.exercises3.householder_qr(A)
Given a real mxn matrix A, use the Householder transformation to find the full QR factorisation of A.

Parameters
A – an mxn-dimensional numpy array

Return Q
an mxm-dimensional numpy array

Return R
an mxn-dimensional numpy array

cla_utils.exercises3.householder_solve(A, b)
Given a real mxm matrix A, use the Householder transformation to solve Ax_i=b_i, i=1,2,. . . ,k.

Parameters

• A – an mxm-dimensional numpy array

• b – an mxk-dimensional numpy array whose columns are the right-hand side vectors
b_1,b_2,. . . ,b_k.

Return x
an mxk-dimensional numpy array whose columns are the right-hand side vectors
x_1,x_2,. . . ,x_k.

cla_utils.exercises3.solve_U(U, b)
Solve systems Ux_i=b_i for x_i with U upper triangular, i=1,2,. . . ,k

Parameters

• U – an mxm-dimensional numpy array, assumed upper triangular

• b – an mxk-dimensional numpy array, with ith column containing b_i

Return x
an mxk-dimensional numpy array, with ith column containing the solution x_i

8.6 cla_utils.exercises8 module
cla_utils.exercises8.Q1AQ1s(A)

For a matrix A, find the unitary matrix Q1 such that the first column of Q1*A has zeros below the diagonal.
Then return A1 = Q1*A*Q1^*.

Parameters
A – an mxm numpy array

Return A1
an mxm numpy array

cla_utils.exercises8.ev(A)
Given a matrix A, return the eigenvectors of A. This should be done by using your functions to reduce to
upper Hessenberg form, before calling hessenberg_ev (which you should not edit!).

8.6. cla_utils.exercises8 module 83



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

Parameters
A – an mxm numpy array

Return V
an mxm numpy array whose columns are the eigenvectors of A

cla_utils.exercises8.hessenberg(A)
For a matrix A, transform to Hessenberg form H by Householder similarity transformations, in place.

Parameters
A – an mxm numpy array

cla_utils.exercises8.hessenbergQ(A)
For a matrix A, transform to Hessenberg form H by Householder similarity transformations, in place, and
return the matrix Q for which QHQ^* = A.

Parameters
A – an mxm numpy array

Return Q
an mxm numpy array

cla_utils.exercises8.hessenberg_ev(H)
Given a Hessenberg matrix, return the eigenvectors.

Parameters
H – an mxm numpy array

Return V
an mxm numpy array whose columns are the eigenvectors of H

Do not change this function.

8.7 cla_utils.exercises9 module
cla_utils.exercises9.get_A100()

Return A100 matrix for investigating QR factoration.

Return A
The 100x100 numpy array

cla_utils.exercises9.get_A3()

Return A3 matrix for investigating power iteration.

Return A3
a 3x3 numpy array.

cla_utils.exercises9.get_B100()

Return B100 matrix for investigating QR factoration.

Return A
The 100x100 numpy array

cla_utils.exercises9.get_B3()

Return B3 matrix for investigating power iteration.

Return B3
a 3x3 numpy array.

cla_utils.exercises9.get_C100()

Return C100 matrix for investigating QR factoration.

Return A
The 100x100 numpy array

84 Chapter 8. cla_utils package



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

cla_utils.exercises9.get_D100()

Return D100 matrix for investigating QR factoration.

Return A
The 100x100 numpy array

cla_utils.exercises9.inverse_it(A, x0, mu, tol, maxit, store_iterations=False)
For a Hermitian matrix A, apply the inverse iteration algorithm with initial guess x0, using the same termi-
nation criteria as for pow_it.

Parameters

• A – an mxm numpy array

• mu – a floating point number, the shift parameter

• x0 – the starting vector for the power iteration

• tol – a positive float, the tolerance

• maxit – integer, max number of iterations

• store_iterations – if True, then return the entire sequence of inverse iterates, instead
of just the final iteration. Default is False.

Return x
an m dimensional numpy array containing the final iterate, or if store_iterations, an mxmaxit
dimensional numpy array containing all the iterates.

Return l
a floating point number containing the final eigenvalue estimate, or if store_iterations, a maxit
dimensional numpy array containing all the iterates.

cla_utils.exercises9.pow_it(A, x0, tol, maxit, store_iterations=False)
For a matrix A, apply the power iteration algorithm with initial guess x0, until either

||r|| < tol where

r = Ax - lambda*x,

or the number of iterations exceeds maxit.

Parameters

• A – an mxm numpy array

• x0 – the starting vector for the power iteration

• tol – a positive float, the tolerance

• maxit – integer, max number of iterations

• store_iterations – if True, then return the entire sequence of power iterates, instead
of just the final iteration. Default is False.

Return x
an m dimensional numpy array containing the final iterate, or if store_iterations, an mxmaxit
dimensional numpy array containing all the iterates.

Return lambda0
the final eigenvalue.

cla_utils.exercises9.pure_QR(A, maxit, tol)
For matrix A, apply the QR algorithm and return the result.

Parameters

• A – an mxm numpy array

• maxit – the maximum number of iterations

8.7. cla_utils.exercises9 module 85



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

• tol – termination tolerance

Return Ak
the result

cla_utils.exercises9.rq_it(A, x0, tol, maxit, store_iterations=False)
For a Hermitian matrix A, apply the Rayleigh quotient algorithm with initial guess x0, using the same ter-
mination criteria as for pow_it.

Parameters

• A – an mxm numpy array

• x0 – the starting vector for the power iteration

• tol – a positive float, the tolerance

• maxit – integer, max number of iterations

• store_iterations – if True, then return the entire sequence of inverse iterates, instead
of just the final iteration. Default is False.

Return x
an m dimensional numpy array containing the final iterate, or if store_iterations, an mxmaxit
dimensional numpy array containing all the iterates.

Return l
a floating point number containing the final eigenvalue estimate, or if store_iterations, an m
dimensional numpy array containing all the iterates.

8.8 Module contents

86 Chapter 8. cla_utils package



PYTHON MODULE INDEX

c
cla_utils, 86
cla_utils.exercises1, 79
cla_utils.exercises10, 80
cla_utils.exercises2, 81
cla_utils.exercises3, 82
cla_utils.exercises8, 83
cla_utils.exercises9, 84

87



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

88 Python Module Index



INDEX

A
ABiC() (in module cla_utils.exercises1), 79
arnoldi() (in module cla_utils.exercises10), 80

B
basic_matvec() (in module cla_utils.exercises1), 79

C
cla_utils

module, 86
cla_utils.exercises1
module, 79

cla_utils.exercises10
module, 80

cla_utils.exercises2
module, 81

cla_utils.exercises3
module, 82

cla_utils.exercises8
module, 83

cla_utils.exercises9
module, 84

column_matvec() (in module cla_utils.exercises1), 79

E
ev() (in module cla_utils.exercises8), 83

G
get_A100() (in module cla_utils.exercises9), 84
get_A3() (in module cla_utils.exercises9), 84
get_AA100() (in module cla_utils.exercises10), 81
get_B100() (in module cla_utils.exercises9), 84
get_B3() (in module cla_utils.exercises9), 84
get_BB100() (in module cla_utils.exercises10), 81
get_C100() (in module cla_utils.exercises9), 84
get_CC100() (in module cla_utils.exercises10), 81
get_D100() (in module cla_utils.exercises9), 84
GMRES() (in module cla_utils.exercises10), 80
GS_classical() (in module cla_utils.exercises2), 81
GS_modified() (in module cla_utils.exercises2), 81
GS_modified_get_R() (in module

cla_utils.exercises2), 81
GS_modified_R() (in module cla_utils.exercises2), 81

H
hessenberg() (in module cla_utils.exercises8), 84

hessenberg_ev() (in module cla_utils.exercises8), 84
hessenbergQ() (in module cla_utils.exercises8), 84
householder() (in module cla_utils.exercises3), 82
householder_ls() (in module cla_utils.exercises3),

82
householder_qr() (in module cla_utils.exercises3),

83
householder_solve() (in module

cla_utils.exercises3), 83

I
inverse_it() (in module cla_utils.exercises9), 85

M
module
cla_utils, 86
cla_utils.exercises1, 79
cla_utils.exercises10, 80
cla_utils.exercises2, 81
cla_utils.exercises3, 82
cla_utils.exercises8, 83
cla_utils.exercises9, 84

O
orthog_cpts() (in module cla_utils.exercises2), 82
orthog_proj() (in module cla_utils.exercises2), 82
orthog_space() (in module cla_utils.exercises2), 82

P
pow_it() (in module cla_utils.exercises9), 85
pure_QR() (in module cla_utils.exercises9), 85

Q
Q1AQ1s() (in module cla_utils.exercises8), 83

R
rank1pert_inv() (in module cla_utils.exercises1), 79
rank2() (in module cla_utils.exercises1), 80
rq_it() (in module cla_utils.exercises9), 86

S
solve_Q() (in module cla_utils.exercises2), 82
solve_U() (in module cla_utils.exercises3), 83

T
time_matvecs() (in module cla_utils.exercises1), 80

89



MATH96023/MATH97032/MATH97140 - Computational Linear Algebra, Edition 2023.0

timeable_basic_matvec() (in module
cla_utils.exercises1), 80

timeable_column_matvec() (in module
cla_utils.exercises1), 80

timeable_numpy_matvec() (in module
cla_utils.exercises1), 80

90 Index


	Getting ready for computational exercises
	Getting the software that you need
	The Terminal
	Python virtual environment
	GitHub and git
	Setting up your repository
	Installing the course package to the venv

	How to do the computational exercises
	Running your work
	Testing your work
	Coding style and commenting
	Skeleton code documentation

	Linear algebra preliminaries
	Matrices, vectors and matrix-vector multiplication
	Your first programming exercises

	Range, nullspace and rank
	Invertibility and inverses
	Adjoints and Hermitian matrices
	Inner products and orthogonality
	Orthogonal components of a vector
	Unitary matrices
	Vector norms
	Projectors and projections
	Constructing orthogonal projectors from sets of orthonormal vectors

	QR factorisation
	What is the QR factorisation?
	QR factorisation by classical Gram-Schmidt algorithm
	Projector interpretation of Gram-Schmidt
	Modified Gram-Schmidt
	Modified Gram-Schmidt as triangular orthogonalisation
	Householder triangulation
	Application: Least squares problems

	Analysing algorithms
	Operation count
	Operation count for modified Gram-Schmidt
	Operation count for Householder
	Matrix norms for discussing stability
	Norm inequalities
	Condition number
	Conditioning of linear algebra computations
	Floating point numbers and arithmetic
	Stability
	Backward stability of the Householder algorithm
	Backward stability for solving a linear system using QR

	Finding eigenvalues of matrices
	How to find eigenvalues?
	Transformations to Schur factorisation
	Similarity transformation to upper Hessenberg form
	Rayleigh quotient
	Power iteration
	Inverse iteration
	Rayleigh quotient iteration
	The pure QR algorithm
	Simultaneous iteration
	The pure QR algorithm and simultaneous iteration are equivalent
	Connections between power iteration, inverse iteration, and QR algorithm
	The practical QR algorithm

	Iterative Krylov methods for Ax=b
	Krylov subspace methods
	Arnoldi iteration
	GMRES
	Convergence of GMRES
	Preconditioned GMRES
	Knowing when to stop

	Preconditioning Krylov methods
	Stationary iterative methods
	Using splitting methods as preconditioners
	Symmetric iterative methods
	Convergence criteria for stationary methods
	Splitting methods as preconditioners
	Convergence analysis for Richardson
	Convergence analysis for symmetric matrices
	An example matrix
	Chebyshev acceleration (nonexaminable in 2023/24)

	cla_utils package
	Submodules
	cla_utils.exercises1 module
	cla_utils.exercises10 module
	cla_utils.exercises2 module
	cla_utils.exercises3 module
	cla_utils.exercises8 module
	cla_utils.exercises9 module
	Module contents

	Python Module Index
	Index

